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ABSTRACT

This paper presents our solution for enabling a quadrotlicdper to autonomously navigate, explore

and locate objects of interest in unstructured and unknmainar environments. We describe the de-

sign and operation of our quadrotor helicopter, beforegmtisg the software architecture and individual

algorithms necessary for executing the mission. Experiadgasults are presented demonstrating the
guadrotor’s ability to operate autonomously in indoor esmments. Finally, we address some of the
logistical and risk management issues pertaining to ouyémthe competition.

1. INTRODUCTION

We describe our quadrotor helicopter solution for navigatexploring and locating objects of interest autonompusl
in unstructured and unknown indoor environments. Our gotl develop a complete autonomous air vehicle system
that can take off, fly through a window, explore and map an omknindoor environment, search for an object of
interest, and transmit the video footage of the object loodtack to the ground station.

There are two technical challenges to this problem. Thedhatlenge is to design the quadrotor helicopter and
onboard-electronics that is able to autonomously stabitizattitude. The second challenge was primarily a softwar
challenge of developing the requisite algorithms that @lly on on-board exteroceptive sensors, such as a laser
rangefinder and stereo cameras, in order to develop a cargylstem that is capable of autonomous navigation and
exploration in GPS-denied environments.

1.1 Conceptual solution

Our system employs a three level sensing hierarchy, as showigure[l. At the base level, the on-board IMU
and processor create a very tight feedback loop to stalthizdelicopter’s pitch and roll, operating HI00H z. At

the next level, the realtime odometry algorithm (laser sual) estimates the vehicle’s position relative to thelloca
environment, while an Extended Kalman Filter (EKF) combitigese estimates with the IMU outputs to provide
accurate state estimates of the position and velocif0atz. These estimates enable the LQR controller to hover
the helicopter stably in small, local environments. In &ddi a simple obstacle avoidance routine ensures that the
helicopter maintains a minimum distance from obstacles.

gotgnd » > Planner ~0.3Hz
ation -

Scan | EKF Data [«
Matcher Fusion |
— |
M 2 Obstacle | fjﬁ? 10-50Hz
Visual | (Avoidance] .1 ControllerJ
Odometry D
i
Laser (" stereo

Scanner ] | Camera Onboard

Controller L2
Helicopter

Figure 1. Schematic of our hierarchical sensing, contraligatanning system. At the base level, the on-board IMU andralber
(green) creates a tight feedback loop to stabilize the betier’s pitch and roll. The yellow modules make up the regaktsensing
and control loop that stabilizes the helicopter’'s pose & libcal level and avoids obstacles. Finally, the red modpleside the
high-level mapping and planning functionalities.



Small errors made by the odometry algorithms will be propedjéorward, resulting in inaccurate state estimates
in large environments. To mitigate these errors, we intceduthird sensing level, where a Simultaneous Localization
and Mapping (SLAM) algorithm uses both the EKF state est®and incoming sensor measurements to create a
global map, ensuring globally consistent estimates of #iéale position and map to detect when the robot returns to
a previously-visited point, and to correctly compute thguféng map from this closed loop in the trajectory. Since
SLAM algorithms today are incapable of processing senstar fdat enough, this module is not part of the real-time
feedback control loop at the second level. Instead, it pl@vdelayed correction signals to the EKF, ensuring that our
real-time state estimates remain globally consistent.

To achieve autonomous operation, a planner enables theleg¢biboth navigate to desired locations and explore
unknown regions of the world. A navigation module plans wagptrajectories through the known grid map main-
tained by the SLAM process to reach desired goal locatiotsn,A0 cope with unknown regions of the environment,
our system relies on a frontier-based explorer to idenfifgritier” regions of unexplored space that serve as future
goal locations.

Finally, to autonomously complete the proposed challemgerequire a high-level mission planner to coordinate
the execution of a series of mission tasks. The problem catebemposed into several core tasks, including: au-
tonomous takeoff; window entrance; exploration and maitding; target search; target data transmission; and safe,
autonomous landing. The mission planner operates as aateamking layer above of our perception, control, and
planning system, arbitrating between these modules armdrditing when to transition between mission tasks.

1.2 Key Challenges for Autonomous MAVs

Combining wheel odometry with exteroceptive sensors irodgbilistic SLAM framework has proven very successful
for ground roboticg® many algorithms for accurate localization of ground robotirge-scale environments exist.
Unfortunately, performing the same tasks on a MAV requiresetthan mounting equivalent sensors onto helicopters
and using the existing SLAM algorithms. Flying robots behsaery different from ground robots, and therefore, the
requirements and assumptions that can be made for flyinggotast be explicitly reasoned about and managed. We
have reported this analysis previously but we summarizeri h

Limited sensing payloadviAVs must generate sufficient vertical thrust to remain airie, limiting the available
payload. This weight limitation forces indoor air robotgédy on lightweight Hokuyo laser scanners, micro cameras
and lower-quality MEMS-based IMUs, all of which are limitedmpared to their ground equivalents.

Indirect odometry: Unlike ground vehicles, air vehicles are unable to measdmmetry directly, which most
SLAM algorithms require to initialize their estimate of thehicle’s motion between time steps. Although odometry
can be obtained by double-integrating accelerationstliglyht MEMs IMUs are often subject to time-varying biases
that result in high drift rates.

Limited computation on-boardDespite advances within the research community, SLAM élgms continue to
be computationally demanding even for powerful desktopmaters, and are therefore not implementable on today’s
small embedded computer systems that can be mounted od-mokror MAVs. While the computation can be
offloaded to a powerful ground-station by transmitting seniata wirelessly, communication bandwidth then becomes
a potential bottleneck, especially for camera data.

Fast dynamics:The helicopter’s fast dynamics also result in a host of sgpsstimation, control and planning
implications for the vehicle. Filtering techniques, susttlze family of Kalman Filters, are often used to obtain brette
estimates of the true vehicle state from noisy measurem&msgothing the data generates a cleaner signal but adds
delay to the state estimates. While delays generally hasigriificant effects on vehicles with slow dynamics, these
effects are amplified by the MAV'’s fast dynamics, and canmoigmored.

Need to estimate velocityn addition, the helicopter’s under-damped dynamics irtht proportional control
techniques are insufficient to stabilize the vehicle; we ttlusrefore estimate the vehicle’s velocities, whereastmos
SLAM algorithms completely ignore the velocity. While thelicopter can accurately hover using PD-control, it
oscillates unstably with only a P-control. This emphasitesimportance of obtaining accurate and timely state
estimates of both position and velocity states.

Constant motion:Unlike ground vehicles, a MAV cannot simply stop and re-eaé¢ when its state estimates
have large uncertainties. Instead, the vehicle is likelggaillate, degrading the sensor measurements furthereThe
fore, planning algorithms for air vehicles must not only li@slked towards paths with smooth motions, but must also
explicitly reason about uncertainty in path planning, andestrated by He et &l.



1.3 Yearly milestones

In March 2008, the team participated in the 1st US-Asian Dastration and Assessment of Micro-Aerial and Un-
manned Ground Vehicle Technology in Agra, India. Compeiing hostage-rescue mission scenario, the team won
the “Best Mission Performance Award”, the “Best Rotary Wikigcraft Award”, and an AMRDEC-award.

In 2009, the team plans to accomplish the 5th mission of tteriational Aerial Robotics Competition.

2. AIR VEHICLE
2.1 Hardware Design

The vehicle we use is a quadrotor helicopter with four smadiéors instead of a main and tail rotor. Two pairs of
rotors spin clockwise and counterclockwise respectivalgh that the sum of their reaction torques is zero during
hovering. Unlike normal helicopters, the rotors of the quaar applied in this work have fixed pitch angles. This
minimalistic hardware design, (no rotor linkages etc) nsatke quadrotor robust so that it can survive the inevitable
crashes during experiments without getting seriously dgeda

In cooperation with Ascending Technologies, we designedaaiptor helicopter capable of carrying a requisite
sensor payload (described in Secfibn 3) fortheninute mission time. The weight of the components was detexd
to be~ 400g plus a safety margin of 100g for cables and mounting material.

The top of the quadrotor was designed as an interlockingtablke able to flexibly mount components for exper-
iments. Sensor positions were aligned so that the fieldsevf dio not intersect with parts of the quadrotor (shown
in Figurel2), and the front rotor was placed below the arm tota@ a low center of gravity, while avoiding camera
obstruction. The electronics and algorithms are sharel thi¢ successful Ascending Technologies Hummingbird
quadrotor - Compared to the Hummingbird, the new vehicle uses lart@n) rotors as well as more powerful
brushless motors to increase the payload.
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Figure 2. (a): CAD drawing of the quadrotor design with simald fields of view. (b): final assembled quadrotor with siere
camera system, laser range-finder, WiFi dongle and on-boardputer

2.2 Attitude Stabilization

The six DOF of the quadrotor are controlled by four inputdl(qitch, yaw, thrust) by varying the lift forces and
the balance of reaction torques through changing the ngtapeed of the rotors. Roll and pitch can be changed by
increasing the speed of one rotor and decreasing the spebd ofher rotor in a pair of rotors. The robot will tilt
towards the slower rotor which leads then to an acceleratidine y- andx-axis respectively. The momentum stays
constant during this maneuver. The yaw-angle is contrdifedarying the speed of each pair of rotors will keep
the sum of lifting forces constant, while the balance of tieactorque of the rotors changes. This yields an angular
acceleration around theaxis. Acceleration in the direction of theaxis (height) is simply achieved by changing the
speed of all rotors collectively.

The quadrotor is an unstable system, and therefore needdevel attitude and heading controller that is provided
by the on-board AutoPilot. It estimates the absolute atéit(roll and pitch angles) by fusing the acceleration vector
measured by the linear acceleration sensors and angutanitie measured by the gyroscopes. The yaw-angle is
estimated relatively by integrating the angular speed oreddy the yaw-gyro. The three axes of rotation (roll, pitch
yaw) are then stabilized by the AutoPilot with three indegent PD controllers at a control loop frequency of 1 kHz.
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Figure 3. The two control loops employed to stabilize thedyoi@r. The inner loop operates at 1 kHz to stabilize thetadke. The
outer loop, operates at 50 Hz to stabilize the position.

While this low level controller is able to stabilize the attie of the vehicle, it cannot perform position control
because the IMU drift is too large to allow double-integratio be successful. Instead, we use two levels of feedback
to control the vehicle and maintain a stable hover as showfigare[3. The inner loop of the on-board attitude
controller stabilizes the high-frequency dynamics of tbadyotor at a rate of 1 kHz.

The slightly slower (although still underdamped and unsfaposition control is performed using the state esti-
mates generated by the modules described in Sddtion 3. Fheand controller takes 4 inputg8,= [u,, u,, us, ugl,
which denote the desired pitch and roll angles, overallghamd yaw velocities. The on-board controller allows the
helicopter’'s dynamics to be approximated with simplerdinequations:

i’ = kyu, + b, 5 = kyug + by
i’ = kyu, + by 0 = koug + by 1)

wherei® andjj® are the resultant accelerations in body coordinates, vilhilendb,, are model parameters that are
functions of the underlying physical system. We learn thgssameters by flying inside a Vicﬂrmotion-capture sys-
tem and fitting parameters to the data using a least-squptiesization. Using Matlaf®’s linear quadratic regulator
(LQR) toolbox, we then find feedback controller gains for gdymamics model in Equatidd 1. Despite the model’s
apparent simplicity, our controller achieves a stable haxth 6¢cm RMS error.

2.3 Flight Termination System

To enable safe operation, the vehicle is able to switch fratareomous to manual control with the flip of a switch on
the safety pilot's RC transmitter. The software running foa dn-board processor constantly monitors the associated
RC channel, and only allows input from the position conéwif the switch is in the correct position. If both the RC
and data-link connections are lost, the vehicle will atteenpontrolled descent.

3. PAYLOAD
3.1 Sensors

Our quadrotor helicopter is outfitted with a laser rangefinsiereo camera rig, color camera, and an on-board com-
puter.

The lightweight Hokuyﬂ UTM laser rangefinder provides20° field-of-view at40H z, up to an effective range
of 30m. We deflect some of the laser beams downwards to estimatbtlaigve the ground plane.

We built a custom stereo-camera rig providing mounts for grayscale uEye cameras. These cameras have a
resolution of752 x 480px (WVGA), and are placed facing forward, with a baseline of 8bseparation, and lenses
with 65° FOV. By placing them as far apart from each other as possil@éncrease the resolution available for stereo
triangulation. An additional color uEye camera is mountedally above the center of the vehicle.

We also mounted a Lippert CoreExpress 1.6Ghz Intel Atomduadth a wifi link to the ground control station.
This processor board provides the bandwidth and computtmwer required to transmit the stereo camera images
to the ground station at 10Hz, as well as enabling our comtnal state estimation modules to be run on-board.
Computation-heavy processes are run off-board at the drstation on a cluster of laptops.

*Vicon Motion Capture Systems. http://www.vicon.com/
THokuyo UTM-30LX Laser. https://www.hokuyo-aut.jp/



3.2 Laser Odometry

The Hokuyo laser rangefinder is used to estimate the vekigietion by aligning consecutive scans from the laser
rangefinder. We developed a very fast and robust laser se&rhing algorithm that builds a high-resolution local
map based on the past several scans, aligning incoming scéris map at the0H z scan rate. This scan-matching
algorithm is an improved version of the algorithm by Olsoalet® which we have modified to allow for high resolu-
tion, yet realtime operation. The algorithm generates alloast-map, from which the optimal rigid body transform
that maximizes a given reward function can be found.

To find the best rigid body transform to align a new laser seanscore candidate poses based on how well they
align to past scans. Unfortunately, the laser scannersdeavdividual point measurements, and because successive
scans will in general not measure the same points in the @nwient, attempting to correspond points directly can
produce poor results. However, if we know thleapeof the environment, we can easily determine whether a point
measurement is consistent with that shape. We model ommoemaent as a set of polyline contours, and these contours
are extracted using an algorithm that iteratively connretsendpoints of candidate contours until no more endpoints
satisfy the joining constraints. With the set of contourg, generate a cost-map that represents the approximate
log-likelihood of a laser reading at any given location.

We create our cost-map from a setioprevious scans, where new scans are added when an incoraimas
insufficient overlap with the existing set of scans used éatr the cost-map.

For each incoming scan, we compute the best rigid body wamsfz, y, §) relative to our current map. Many
scan-matching algorithms use gradient descent techntquastimize these values, but these methods are subject to
local optima. Instead, we perform an exhaustive searchtbeegrid of possible poses, which can be done fast enough
by setting up the problem such that optimized image addidmitives can be used to process blocks of the grid
simultaneously. In addition to improved robustness, gatirey the complete cost-surface allows us to easily quantif
the uncertainty of our match, by looking at the shape of thet sarface around the maximum. As with the dynamics
model, more details can be found in previous publications.

3.3 Visual Odometry

We also developed a visual odometry algorithm which makesafighe on-board stereo camera rig (note: some
analysis, results and figures appeared previoudly)irin general, a single camera is sufficient for estimatinatie
motion of the vehicle, by using the feature correspondeatesnsecutive image frames, but only up to an arbitrary
scale factof? If enough feature correspondences (at least 7-8) are higihe fundamental matrix describing the
motion of the camera can be computed. Decomposing thisxatds the relative rotation and translation motion of
the camera, and while the rotation can be uniquely computédrespect to this scalar factor, we can only compute
the translational direction of the motion, and not its magphe.

To resolve this scale ambiguity, either scene knowledgedessary, or two successive views must have distinct
vantage points and a sufficiently large baseline betwean.thEhis makes estimation of motion in the direction of
the camera’s optical axis difficult. Given that prior knoddge of unknown environments is typically unavailable, and
MAVs often move slowly and forward with the camera facingfraautonomous navigation for MAVs has proven to be
very challenging . This motivates our choice for using aesigramera to reconstruct the 3D-position of environmental
features accurately. The stereo-rig not only enforces elin@distance between the two cameras, but also allows us to
reconstruct the feature positions in a single timestepgrahan using consecutive frames from a monocular camera.
In this sectionleft andright denote the images taken from the left and right stereo cammespectively, as seen from
the helicopter’s frame of reference.

Our approach for stereo visual odometry is outlined in Fefdir Features are first detected in kb frame from
the previous time-step (1). These features are then foutiteipreviougight frame (2), enabling us to reconstruct
their positions in 3D-space using triangulation. This ‘fsgastereo” method not only avoids unnecessary computatio
of depth and depth error-handling in areas that lack featime also avoids image rectification as long as the camera’s
optical axis are approximately parallel. Successfullyrestructed features are then tracked from the previftiso
the currenteft frame (3), and a similar reconstruction step is performethfe current frames (4). This process results
in two “clouds” of features that relate the previous and entviews. With these correspondences, the quadrotor’s
relative motion in all 6dof can be computed in a least-squares sense with a closed fariosd5).
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Figure 4. Basic scheme of the stereo visual odometry algoritl. Feature detection; 2. Tracking froleft to right frame and
depth reconstruction; 3. Tracking from previous to currratne; 4. Similar to 2.; 5. Frame to frame motion estimation.

3.3.1 Feature detection

Although SIFT! and SUREF features are popular choices for visual feature deteatorsputing them fast enough for
our purposes on modern hardware remains computation#gsible, given the control requirements of our quadro-
tors discussed in Secti@ll.2. Instead, we adopted the PA®ature detector. In order to avoid detecting many
distinct features that are in close geometric proximity dsreother, we down-sample the image before running the
feature-detector, and transform these feature locatmtigtfull size image after detection. Unfortunately, madge
features are still detected by FAST, leading to inaccuresuire-tracking results. We therefore refine these corner
estimates using the Harris corner-respérieseeach feature. A Harris parameter64 eliminates most of the edge
features in the feature set. The use of the FAST detectordigdad allows us to compute the more computationally
intensive image-gradients and corner-responses usecehiyatris detector only for the areas detected by the FAST
detector — a small subset of the entire image.

To track the features between tledt andright frames, as well as from the previous to the current frames, we
use the pyramidal implementation of the KLT optical flow &arcavailable in OpenCV.This implementation allows
us to track features robustly over large baselines and isstdb the presence of motion blur. Compared to template
matching methods such as SAD, SSD and NCC, this algorithrs festure correspondences with subpixel accuracy.
For correspondences between kit andright frames, error-checking is done at this stage by evaluatieg@pipolar
constraintzfightF:cleft = 0 £ ¢, wherex denotes the feature location in the respective frafis the fundamental
matrix pre-computed from the extrinsic calibration of tierso rig, and is a pre-defined amount of acceptable noise.

3.3.2 Frame to frame motion estimation

Once we have the sets of corresponding image features,dhepeojected to a 3D-space by triangulation between the
left and right cameras. Then, with these two sets of cormedipg 3D-feature locations, we can estimate the relative
motion between the previous and current time-steps usiagltsed form method proposed by Umeydfhal his
method computes rotation and translation separately,niindn optimal solution in a least squares sense. Unfortu-
nately, least square methods are sensitive to outliersyanterefore use Umeyama’s method to generate a hypothesis
for the robust MSAG® estimator, a refinement of the popular RANSAC method. Aftedifig a hypothesis with the
maximum inlier set, the solution is recomputed using alkirsl.

This method gives the transformation of two sets of pointthwespect to a fixed coordinate system. In our
application, the set of points is fixed while the camera or M®o6rdinate system is moving. The rotati&s? and
translationAt of the helicopter to it's previous body frame are then givgm¥? = R” andAt = —RTt, whereR
andt denote the rotation and translation which were derived fileemethod above. Using homogeneous transforms,
the pose of the helicopter to an initial pogg, is given by:

)

Tcurrent - TO . AT‘t—n-ﬁ-l BRI A/Tt—l . ATt - Tpre’uious . ATt with T = |:R t:|
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3.3.3 Nonlinear motion optimization

Similar to the laser scan-matching process, small measneenrors will accumulate over time and result in highly
inaccurate position estimates over time, according to &opid. Additionally, since the motion between frames tends
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Figure 5. Bundle adjustment incorporates feature corresf@mces over a window of consecutive frames.

to be small, the velocity signal is highly susceptible toseoi However, because many of the visual features remain
visible across more than two consecutive frames, we camatgithe vehicle motion across several frames to obtain
more accurate estimates. This can be done using bundlgraéju&’ (shown in Figur€ls), where the basic idea is to
minimize the following cost function:

C(XZ‘, Rj, tj) = Z Zd(xij, Pin)2 with Pj = [KJR7 Kjtj] (3)
i=0 j=0
whered(x;;, P;X;) is the re-projection error due to the projection of the 3Btfiee,X;, onto the camera’s image
plane using thg-th view, so as to obtain the 2D-point;;. Here,m andn are the number of 3D-features and views
respectively, whilek; is the intrinsic camera matrix, which is assumed to be consta

We are therefore seeking to find the optimal arrangement efie2iures and camera-motion parameters so as to
minimize the sum of the squared re-projection errors. Thidlem can be solved using an iterative nonlinear least
squares methods, such as the technique proposed by Legevibequardt. Here, normal equations with a Jacobian
(J) from the re-projection function have to be solved. Althbule cost function appears simple, the problem has a
huge parameter space. We have a tota}:of+ 6n parameters to optimize — three parameters for each 3Dréeatu
and six parameters for each view. In addition, in each LegggMarquardt step, at least re-projections have to
be computed per view. Computation in real-time thereforieldy becomes infeasible with such a large parameter
space. Fortunately] has a sparse structure, since each 3D-feature can be amusiddependent, and the projection
of X; into z;; depends only on thg-th view. This sparse-bundle-adjustment problem can beedalsing the generic
package by Lourakis and Argyré$and we used this package for our application.

Running bundle adjustment over all frames would quicklyllEacomputational intractability. Instead, we pursued
a sliding-window approach, bundle-adjusting only a wind@the latest: frames. By using the adjustment obtained
from the old window as an initial estimate of the next bundlpiatment, we ensured that the problem is sufficiently-
constrained while reducing the uncertainties due to noidee presence of good initial estimates also reduces the
number of optimization steps necessary. Performing buedjlestment for 150 features using a window size 6f 5
took approximately 30-50ms.

Thus far, we have assumed that the feature correspondesim ry for bundle adjustment are known. These cor-
respondences could be found by chaining the matches framefta-frame; unfortunately, our optical-flow-tracking
approach does not compute the descriptors in the currenéfrghen tracking the relative motion between the previous
and current frames. Therefore, the Harris corner respanseath feature is re-computed and sorted as described in
Sectio3.311. Given that the number of features diminigives successive frames, new features are also added at
every timestep, and when the new features are located dasé features, the old ones are preferred.

3.4 EKF Data Fusion

Having obtained relative position estimates of both thaaleland environmental features from the individual sessor
these estimates can then be used in a sensor-independem¢mfanstate estimation, control, map building and
planning. We use an Extended Kalman Filter (EKF) to fuse éhative position estimate, y, z, §) of the vehicle
with the acceleration readings from the IMU. Using the opamurse KFilter library, we estimate the position, velocity,
and acceleration of the vehicle, as well as biases in the W& perform the measurement updates asynchronously,
since the wireless communication link adds variable delayhe measurements, while the motion model prediction
step is performed on a fixed clock. As dewe learn the variance parameters by flying the helicopter Mican
motion-capture system, which provides ground-truth parsiand velocity values for comparing our state estimates
against. We then run stochastic gradient descent to findaf satiance parameters that gives the best performance.



3.5 SLAM

With sufficiently accurate estimates of the vehicle’s goeiaind velocity to achieve a stable hover, we can use SLAM
algorithms, originally developed for ground robots, on MAV. With only slight modifications, we can close loops
and create globally consistant maps. We chose the Gmdpaligarithm that is available in the OpenSlam repository.
GMapping is an efficient Rao-Blackwellized particle filtehish learns grid maps from laser range data. We chose it
due to its outstanding accuracy, real-time performanaoe jtarability to handle the changing map that occurs due to
changing height and attitude. Using this algorithm requ#ehanges:

1. Modifying the motion model to use the variance estimatesputed by the scan matcher
2. Making the map incorporate new information faster
3. Configuring the system to discard stale data when the nfageimce started to lag the arrival of new data

4. Finding a set of parameters that worked well with the gtaenge Hokuyo laser scanners

3.6 Navigation and Exploration

To achieve autonomous operation, we require a planner tizgdities the vehicle to both navigate to desired locations
autonomously, and explore unknown regions of the world. ¥gation module was developed to facilitate motion-
planning within the known grid map maintained by the SLAMgess. The navigator generates a trajectory consisting
of a sequence of waypoints in the environment to reach a goatibn from the current vehicle position. This goal
trajectory is computed using dynamic programming overjadtary graph within the map, and balances finding short
paths with those that promote safer execufion.

Since no prior map of the mission environment is availalbiegxploration module is required to determine where
the quadrotor should fly to next based on the partially cotepleap maintained by the SLAM process. We use a
frontier-based exploréf, where unknown map cells are grouped into “frontier” regians serve as possible goal
locations for the robot. These goals can be prioritized thasethe expected information gain in each region, and the
navigator subsequently used to generate trajectoriegse thontier points.

3.7 Target Identification

To identify the target location within the environment, wevdloped a camera-based LED detector module that pro-
cesses color video footage and identifies image regionsaditgh likelihood of containing the target blue LED. While
navigating the environment, the LED detector is used to taairan augmented map representation, noting regions of
interest within the environment.

3.8 Threat Avoidance

An obstacle avoidance routine ensures that the helicopaértains a minimum distance from obstacles detected by
the laser rangefinder or stereo cameras. This routine asstongol if an unmapped obstacle is encountered.

3.9 Experiments and Results

The technologies described above were evaluated in autmmmavigation tasks in unstructured and unknown in-
door environments. During development and testing, erpents for the laser scanmatching and visual odometry
algorithms were performed separately, and the correspgneiénsors mounted on Ascending Technologies Hum-
mingbird helicopters. Videos of our system in action arelakbée at:

http://groups.csail.mit.edu/rrg/videos.html

Figure§6(d) and 6(b) demonstrate the quality of our EKFestatimates using the laser range data. We compared
the EKF state estimates with ground-truth state estima&esrded by the Vicon motion capture system, and found
that the estimates originating from the laser range scarshntlae ground-truth values closely in both position and
velocity. Throughout thé minute flight, the average distance between the two positstimates was less thabecm.

The average velocity difference wa$2m/s, with a standard deviation 6f025m/s. The vehicle was not given any
prior information of its environment (i.e., no map).

Figurell demonstrates the quality of our EKF state estimatigy the camera range data. We compared the EKF
state estimates from the camera with ground-truth staieatsts recorded by the Vicon motion capture system, and
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Figure 6. (a) Comparison between the position estimatechbyoh-board laser sensor with ground truth measurements &n
external camera array. (b) Comparison of the velocitiesmipart of the trajectory.
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Figure 7. Position and speed over 1200 frames estimatedyylsivisual odometry from frame to frame (green) and by apétion
with bundle adjustment (blue) compared to ground truth @atained by the Vicon motion-capture system. The vehiateflying
with position control based on the estimates from bundlestdjent

found that the estimates originating from the camera da@mlatch the ground-truth values closely in both position
and velocity. Additionally, the bundle adjustment substdly reduces the total error. As before, the vehicle was no
given any prior information of its environment (i.e., no map

Finally, we flew the laser-equipped helicopter around trst floor of MIT’s Stata Center. The vehicle was not
given a prior map of the environment, and flew autonomoushgusnly sensors on-board the helicopter. The vehicle
was guided by a human operator clicking high-level goalfhierrhap that was being built in real-time. The vehicle
was able to localize itself and fly stably throughout the emwinent, and Figurg 8{a) shows the final map generated
by the SLAM algorithm. While unstructured, the relativelgrtical walls in the Stata Center environment allows the
2D map assumption of the laser rangefinder to hold fairly well

3.10 Autonomous navigation in cluttered environments

While unstructured, the relatively vertical walls in thetstCenter environment allows our 2D map assumption to hold
fairly well. We next tested our system by flying through a @ted lab space (insert of Figyre (b)), operating close to
the ground. At this height, chairs, desks, robots, plamts,ciher objects in the area make the 2D cross-sectional scan
obtained by the laser rangefinder vary dramatically witngfes in height, pitch, and roll. The resultant SLAM map of
the environmentis shown in Figufe_§(b). The grey featuteséd within the otherwise free space denote the objects
that clutter the environment and are occasionally sensalélaser rangefinder. Despite the cluttered environment,
our vehicle is able to localize itself and maintain a stabtghflfor 6 min over a distance of4.6m, a feat that would

not have been possible with a static map assumption.



(b) Map of MIT Stata Center, 3rd Floor. (c) Map of MIT Stata Center, basement.

Figure 8. (a) Map of the first floor of MIT’s Stata center constied by the vehicle during autonomous flight. (b) Map of &eted
lab space with significant 3D structure. (c) Map of constealoffice hallway generated under completely autonomousration.

3.11 Autonomous exploration in office hallways

Finally, to demonstrate fully autonomous operation of thbkigle, we closed the loop with the exploration algorithms.
The helicopter was tasked to explore a hallway, shown inrikert of Figur§ 8(¢). Once the helicopter took off and
began exploring, we had no human control over the helicgpaetions as it autonomously explored the unknown
environment. The helicopter continuously searched for fientier goals and generated paths to these areas of new
information. Figur§ 8(¢) shows the map built franmin of autonomous flight, after traveling a distanc&d8m.

4. OPERATIONS
4.1 Flight Preparations

A process has been established to ensure safety and cahsigégation when initializing the system and executing
a mission. The process includes a hardware phase, ensherglectro-mechanical integrity of the system, and a
software phase that initializes all modules for missionlogmpent.



4.1.1 Flight Checklist
inspect vehicle propellers and linkages

test vehicle battery and plug into quadrotor

power on vehicle and ground station

test communication links and startup processes (clog&spnization, messaging daemons)
run the mission process manager, start all processes

ensure health of all processes

safety pilot: start the vehicle, enter active monitoring

ground station operator: in mission planner, start rorssi
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flight termination upon mission completion, mission apor safety pilot override

4.2 Human-Robot Interface

A graphical user interface is used for starting and monitpill processes, which provides a single interface for
aggregating system operation and health monitoring obfithve&re modules. A process file is loaded into the mission
process manager, which provides an ordered list of eactvadtmodule and the corresponding host machine it is
run on. The process manager enables the operator to stast@m@rocesses, and shows the health of the process
(in easily identifiable color-coded states), the statusasft ltommunication links, and statistics on CPU utilization
An additional interface shows the mission status and agdesghe relevant output from all software modules. This
interface enables the operator to start, pause, and iteastassion, and provides display windows for camera modules
and a current map output by the SLAM module that is annotatgdimformation from the state estimator, navigator,
and LED detector.

5. RISK REDUCTION

A number of measures have been taken to manage the safetyofiskerating and testing the vehicle. The vehicle
has been outfitted with several safety features, such aatiabrdamped sensor mounts and blade guards that provide
for the safety of the vehicle and humans in the environmetitérevent of a collision. In addition to mounted safety
hardware, we use a simulation environment and a Vicon matéagiure system to provide a test harness for our
software modules and algorithms during development. Eurthie have implemented autonomous safety behaviors
that identify known risks and react accordingly.

5.1 Vehicle Status and Safety

The vehicle status is constantly monitored both by softwaodules and human operators. Two human operators are
required to monitor the vehicle status: one as a safety witht manual override capabilities; the other as the ground
station operator that oversees the status of software ragduld vehicle state estimation. Further, autonomousysafet
behaviors include an obstacle avoidance module and systahmonitors including power level and communication
link health. In the event of communication loss or low battasltage, the vehicle performs a controlled descent to the
ground.

5.2 Modeling, Simulation and Testing

During software development, modules are tested in a 3Dlalion environment and within a Vicon motion-capture
system. The simulator provides a model of our quadrotoroketdynamics and position, laser, and camera sensor
information. The motion-capture system is used when flyliregahysical vehicle to provide ground-truth position and
velocity data for system identification and controller i

After validation in the simulator, software modules ardd¢dson the vehicle within the motion-capture system. A
safety-harness controller, with motion-capture feedbhels been developed to automatically assume control of the
vehicle if it leaves a prescribed flight region. This prowdesafe and powerful intermediate testing environment for
the vehicle before testing in real scenarios.



6. CONCLUSION

In this work, we have developed a quadrotor helicopter systet is capable of autonomous navigation in unknown
and unstructured indoor environments using sensors ordlloavehicle. We have also developed a hierarchical suite
of algorithms that accounts for the unique characterisifcair vehicles for estimation, control and planning, and
can be applied with various exteroceptive sensors. In tlae future, we hope to fully integrate the 3-dimensional
information available in our sensor suite to perform autonas MAV operations in rich indoor environments.
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