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THIS paper describes some of the key technologies used to accomplish the control, guidance, and naviga-
tion required in the mission 7 of the international aerial robotics competition (IARC). We also discuss

the details of our quadrotor aerial vehicle, Georgia Tech quadrotor mini (GTQ-mini), which is used for the
2016 IARC. The GTQ-mini carries a high performance computer, and the system platform consists of an in-
ertial measurement unit, a laser altimeter, and a monocular camera. The monocular camera is used for two
purposes: localization of the vehicle and target tracking. Our localization is powered by a Bierman Thorn-
ton extended Kalman filter which utilizes feature points extracted with the corner Harris algorithm. We use
two vision techniques to detect target ground vehicles: the Haar-like feature detection and the normalized-
correlation-coefficient-based template matching. These detections are plugged into multiple extended Kalman
filters, and that achieves the fusion of the multiple outputs of the two different techniques and the tracking of
multiple agents. The 3D trajectory generation is required when the vehicle approaches a ground target, and
that is achieved by an optimal control method called the receding horizon differential dynamic programming.
The strategy for the mission is analyzed by using the image-in-the-loop simulator. We discuss the results of the
simulations and the flight tests operated using the GTQ-mini.

Nomenclature

K Kalman gain matrix
P Error covariance matrix
Q Process noise covariance matrix
R Measurement noise covariance matrix
Z The Z value, Mahalanobis distance
r Residual of an estimator
fx, fy Horizontal and vertical focal lengths of a camera
γxγy Horizontal and vertical field of view of a camera
Li j Rotation matrix from a j frame to an i frame
Upperscript, Subscript represents
t Target
b Body of a vehicle
c Camera
i Inertial frame
− A priori variable in the extended Kalman filter
+ A posteriori variable in the extended Kalman filter
Â Estimated value of A
axb

c A variable x of a with respect to b expressed in the c frame, e.g, the x-coordinate position of the target with respect
to the origin of the camera expressed in the inertial frame is denoted tXc

i

∗Graduate Research Assistant, School of Aerospace Engineering, takuma.nakamura@gatech.edu
†Graduate Research Assistant, School of Aerospace Engineering, shaviland3@gatech.edu
‡Graduate Research Assistant, School of Aerospace Engineering, dbershadsky3@gatech.edu
§Associate Professor, School of Aerospace Engineering, eric.johnson@gatech.edu

1 of 11

International Aerial Robotics Competition



I. Introduction

UNMANNED aerial vehicles (UAVs) would become a central technology of the new generation. We have already
used UAVs as a reliable solution for photo-shooting and video-filming, and UAVs have become a massive in-

dustrial product. UAVs have played a huge role in the various areas from entertainment to military service, and their
future application would apply to a lot more elements such as delivery and communication. However, there are a lot
of problems to which the current UAV systems do not have a reliable and affordable solution. A indoor flight is one of
the remaining challenges we need to solve because we are not able to use a global positioning system (GPS), which
current UAV navigation highly relies on. We also need a robust and accurate object detection to approach a target and
avoid an obstacle. The design of an aerial vehicle needs to be reconsidered to achieve a long-enduring flight. The
mission 7 of the international aerial robotics competition (IARC) aims to solve these problems and tries to move the
current state-of-the-art one step forward.

I.A. Problem Statement

For mission 7 the task is to develop a vehicle that can navigate over a 20 meter by 20 meter arena that can autonomsly
herd ground targets while avoiding moving obstacles. Inside this arena, we have 10 iRobot Creates used as ground
targets and 4 iRobot Creates acting as dynamic obstacles. We need to herd at least 7 of the ground targets towards the
goal line while avoiding the obstacles. Herding requires an interaction between an aerial vehicle and a ground target
which is achieved in two ways: landing in front of the target to hit the dumper sensor and flying over the target to
activate a hull effect sensor. The mission duration is 10 minutes, and we are expected to navigate as many ground
targets as possible in the duration. Only the onboard sensors can be used to percept a target and localize an aerial
vehicle, but an external computational power is allowed.

I.B. Conceptual Solution

The Georgia Tech Aerial Robotics Team (GTAR) has developed an indoor micro aerial vehicle (MAV) that is able to
explore a GPS-denied environment without any external aid. This vehicle is custom made by using the optimization
tool called the electronic multirotor sizing tool (EMST) optimizer that selects the appropriate drive system for the
specified mission, and achieves a flight duration enough to achieve the mission. We fuse the onboard sensor informa-
tion — an inertial measurement unit (IMU), a laser altimeter, and a camera — using a Bierman Thornton extended
Kalman filter (BTEKF) that estimates the position, velocity, and attitude of the vehicle. This filter is also capable
of estimating the 3D biases of the IMU. This filter is aided by the vision system that extracts the feature points of
an indoor structure; thus, we can know the relative position to the initial position. Our vision system enables target
tracking by using multiple extended Kalman filters (EKFs). Perception of the target is achieved by the combination of
the Haar-like feature detector and the template matching using normalized cross correlation (NCC). We run up to 10
EKFs to track all the ground targets. Since we know the physical sizes, speed, and turn rate of the targets, we use those
a priori information to distinguish the targets from the obstacles. Once an appropriate target is found, we generate
a landing trajectory by using the receding horizon differential dynamic programming (DDP). The receding horizon
approach allows the vehicle to take appropriate time to land. In other words, the navigation system does not force the
vehicle to land with an aggressive maneuver. These technologies are described in detail in the following sections.

I.C. Yearly Milestones

GTAR is entering the 7th mission for the first time. The core of our software used for control, guidance, and navigation
that achieves the fundamentals (waypoint tracking, sensor fusion, state estimation) comes from the system used for
the 6th mission; however, the following improvements and new capabilities are added to the system:

1. Improved inertial-navigation system aided by the vision system that achieves greater numerical stability,

2. A custom made MAV vehicle with a new stability augmentation system (SAS)

3. Vision-based target tracking that enables multiple agent and multiple model tracking

4. A capability to generate a 3D generation for autonomous landing

These and other improvements are described in detail in this paper.
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II. Description of Vehicle

II.A. Hardware

GTAR uses the Georgia Tech quadrotor mini (GTQ-mini) for the 2016 IARC, and Figure 1 shows this vehicle. The
GTQ-Mini weighs 500-700 grams depending on an installed battery and is less than 450mm in length in any dimension.
It is able to fly without any external aid such as computing power and Vicon cameras. Test flights were operated at the
Georgia Tech Indoor Flight Facility (Figure 2-(a)) using Vicon systems and in the AHS 2015 MAV student challenge,
and the indoor flight capability is analyzed. This vehicle was developed with the UAV Research Facilitys, UAVRF,
Electronic Multirotor Sizing Tool (EMST) optimizer, which allowed the vehicle to achieve the desired operation time
and weight. The onboard computer, Gigabyte Brix 3, runs on Ubuntu 14.04 Operation System, and the computer
communicates via USB interface with an Ardupilot. The Ardupilot provides IMU sensor readings to the Gigabyte
Brix for processing. Custom USB cables were made to allow a MB1040 LV MAXSonar EZ45 sonar sensor and a
downward facing Firefly-MV 6 USB monocular camera to connect to the onboard computer.

II.B. Software

The flight tests were conducted using Georgia Tech UAV Simulation Tool (GUST)a. GUST is a software framework
that the UAVRF has installed to many vehicles for developing and testing purposes. GUST provides hardware-in-the-
loop (HITL), software-in-the-loop (SITL) and ground station software. The full state vector of the system in GUST
for the indoor flight is expressed as follows:

x̂ =
[
q̂ p̂i v̂i

sb̂ ω b̂ f p p̂1 · · · f p p̂N

]T
, (1)

where p,v,q is the position, velocity, attitude quaternion respectively, and sb,ω b is the bias of the accelerometer and
gyroscope, respectively. N is the number of feature states, and f p p̂i denotes the position of the i-th feature point. The
feature points are extracted using a corner Harris algorithm, and the feature states are assumed to be static. Instead
of the conventional EKF, navigation uses a Bierman-Thornton EKF (BTEKF).1 The BTEKF uses modified Cholesky
factors2 U and D on the covariance matrix P:

P =UDUT , (2)

where U is upper triangular matrix with a unit diagonal, and D is a diagonal matrix. The conventional EKF
propagate is replaced by

U−k = LT ,D−k = GT

[
D+

k−1 0
0 Qk−1

]
G, (3)

where L is expressed in the equation below: [
U+

k−1
T FT

k−1

I

]
= GL. (4)

The EKF measurement update equation is also expressed using U and D as follows:

U+ =U−Ua, (5)

where

D−− D−U−T HT HU−D−

HU−D−U−T HT +R
=UaD+UT

a . (6)
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Figure 1. Figure shows our aerial vehicle GTQ-mini.

(a) (b)

Figure 2. Figure (a) shows the flight test in the Georgia Tech Indoor Flight Facility where the GTQ-mini is in flight with a safety cable. Figure (b) shows the
2015 AHS MAV Student Challenge where the GTQ-mini is in flight for practice.

III. Target Tracking

III.A. Perception

We use two vision techniques to percept a ground target and an obstacle. The first technique is a machine-learning-
based algorithm called a Haar-like feature detector.3 The Haar-like feature detector is one type of feature-based
approach to object classification. Typically, a feature-based approach functions operate faster than the pixel based;
therefore, it is suitable for real-time applications such as target tracking using UAVs. We show in Figure 3-(a) some of
the basic features. The Gentle Adaptive Boost Algorithm (Ada Boost) uses these simple features to train a classifier.
Ada Boost needs images that contain the object of interest, which are so called positive images, and images that do
not contain the object of interest, which are so called negative images. We used 500 positive images and 600 negative
images to train the classifier for iRobot Creates. The raw outputs of the Haar-like feature detector are shown in the
Figure 3-(b). Since we know the physical sizes of the target, the sizes of the target expressed in a camera frame
(a,b[pixel]) can be estimated using the vehicle altitude as follows:

a =− WidthA
2bẐi

i tan( γx
2 )

, b =− WidthB
2bẐi

i tan( γy
2 )

, (7)

ahttp://www.uavrf.gatech.edu/platforms/gust/
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(a) (b)

Figure 3. Figure (a) shows examples of the Haar-like features, and Figure (b) shows a demonstration of the Haar-like feature detector finding an iRobot
Create. The diagonal crossings are the raw measurements and the red rectangle shows the solution of the EKF that choose an appropriate measurement using
the Mahalanobis distance.

where A,B(ft) are the dimensions of the target, γx,γy are the horizontal and vertical field of view, respectively. The
classifier only searches the features with the estimated size. In order to allow the estimation error in target size, we
give k-pixel margin, i.e., the detection starts with the smallest classifier size a−k,b−k and ends with a+k,b+k. This
technique not only reduces the wrong positive hit, but also speeds up the process. The measurement of the Haar-like
feature detector is expressed as:

zi =

[
u
v

]
i

+ vk =

 fx
tŶ c

c
t X̂c

c

fy
t Ẑc

c
t Xc

c

+ vk, (8)

where i is the index for the measurements at the same time, wk is process noise, and vk is measurement noise. Both
of them are zero-mean Gaussian, i.e. wk ∼ N(0,Qk) and vk ∼ N(0,Rk). Up to 20 raw measurements are stored for
the Z-test, and the best measurements are plugged into the Kalman filter update. The state of the estimator, x̂, is the
position of the target in inertial frame, and the z position is overwritten by the output of the vehicle state estimation.

III.B. Filter Design

We use a standard state space form.
xk+1 = Fxk +wk, (9)

yk = Hkxk + vk, (10)

This F matrix varies depending on the target dynamics models. The output matrix H cannot be directly computed, but
using the position of the target expressed in the camera frame4 it can be expressed as:

H =
∂ z
∂ ri
|x=x̂ (11)

=
∂ z
∂ rc

∂ rc

∂ ri
|x=x̂

=

 ∂u
∂ t X̂c

c

∂u
∂ tŶ c

c

∂u
∂ t Ẑc

c
∂v

∂ t X̂c
c

∂v
∂ tŶ c

c

∂v
∂ t Ẑc

c

Lci

=

− fx
tŶ c

c
t X̂c

c
fx

1
t X̂c

c
0

− fy
t Ẑc

c
t X̂c

c
0 fy

1
t X̂c

c

Lci,
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where fx, fy is the focal length of the camera, and the rotation matrix from camera to inertial is denoted Lic = LT
ci.

Using the camera tilt (α), and pan (β ) angle which are defined with a right-handed coordinate system with x-axis
being the optical axis, the transformation matrix from body to camera frame can be expressed as follows:

Lcb =

 cos(α) 0 −sin(α)

sin(β )sin(α) cos(β ) sin(β )cos(α)

cos(β )sin(α) −sin(β ) cos(β )cos(β )

 , (12)

The transformation matrix from inertial to camera frame is obtained as

Lci = LcbLbi. (13)

The focal length fx, fy is expressed as follows using the width and height of the image:

fx =
Width

2tan( γx
2 )

, fy =
Height

2tan( γy
2 )

, (14)

In the propagation of the EKF estimation, the covariance matrix, P, is updated using the discrete Lyapunov equation
as follows:

P−k = Fk−1P+
k−1FT

k−1 +Qk−1. (15)

Since the target is known to be static, the state of the estimator, x̂, is replaced by the previous posterior state, i.e.
x̂−k = x+k−1.The propagation of the error covariance matrix is expressed as P−k = P+

k−1 +Qk−1. In the update phase, the
state and covariance matrix are updated using the Kalman gain matrix, which is obtained from the below equation:

Kk = P−k HT
k (HkP−k HT

k +Rk)
−1. (16)

Although the linear model is available for the update of the state, the non-linear function, h(x) that takes in the current
state and computes an expected measurement vector is used for the update to reduce the issues related linearization.

x̂+k = x̂−k +Kk(zk−h(x̂k)), (17)

P+
k = (I−KkHk)P−k , (18)

The statistical test, which is also called Z-test, is used to solve the corresponding problem. Since there are multiple
outputs from the Haar-like feature detector, we need to choose an output used for the measurement update. The Z
value, also called Mahalanobis distance, is defined as follows:

Z = rT
k (HkPkHT

k +Rk)
−1rk, (19)

where rk is the residual. The measurement with the smallest Mahalanobis distance is used for the EKF update.
The constant threshold for the Z value is set. This way, when the estimation is less confident, the measurement with a
large residual is allowed for the update, and vice versa.

We use multiple model adaptive estimation technique to tell the conditions of the targets (straight, spin, and turn)
and distinguish targets from obstacles. For N mutually exclusive values x1,x2, · · · ,xN , the probability P(y) can be
expressed as follows:

Pr(y) = Pr(y|x1)Pr(x1)+Pr(y|x2)+ · · ·+Pr(y|xN)Pr(xN). (20)

This result is known as the total probability theorem. We use this theorem to compute the probability that x j,k = xtrue,k
given the observation zk. From Bayes’ rule this probability can be written as

Pr(x j|zk) =
pdf(zk|x j)Pr(x j)

ΣN
j=1pdf(zk|x j)Pr(x j)

. (21)

The probability density function can be approximated by using the S matrix, which is computed as a by-product of
Kalman gain in (16).

pdf(zk|x j)≈
exp(−rT

k S−1
k rk/2)

(2π)q/2|Sk|1/2 , (22)
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where q is the number of measurements, and rk is a residual. Finally, we can use the parameter set with the highest
conditional probability as follows:

x̂true = argmaxx j
Pr(x j|zk), (23)

When the probability becomes too large or too small (i.e. Pr ≈ 0 or 1), it is nearly impossible for the estimator to
switch the mode; therefore, we restrict each probability to [0.01, 0.99].

III.C. Target model

Our estimator is designed to track the position and heading of a ground target which has multiple known modes. The
target is differential driven as shown in Figure 4, and difference of the velocity between the left wheel (vl) and the
right wheel (vr) changes the heading ψ of the target. This dynamics can be expressed as follows:

t Ẋi =
vl + vr

2
cos(t

ψ), (24)

tẎi =
vl + vr

2
sin(t

ψ), (25)

t
ψ̇ =

vl− vr

b
. (26)

From the IARC rule, the target could have three modes: straight, spin, and turn. All the three modes are established
by giving a different set of [vl ,vr] for a certain period of time. In each mode the wheel velocities [vl ,vr] are given as
shown in TABLE 1. While in the straight mode, the vehicle runs straight with the constant velocity 0.33 m/s. We use
this velocity as the default target velocity tV . While spinning, ±tV/2 is given to each wheel. Since vl is positive, the
target always spins clockwise as defined in Figure 4. The turn mode gives up to ±0.032 m/s to each wheel in addition
to tV . The additional velocity is decided randomly. We suggest to track the target by separating this dynamics into

two modes f1(x), f2(x) where x =
[

tXi
tYi

tψ

]T
as follows:

dx1

dt
= f1(x) =

tV cos(tψ)
tV sin(tψ)

0

+w1, (27)

dx2

dt
= f2(x) =

0
0
Ω

+w2, (28)

where w1,w2 is zero-mean Gaussian noise w1 ∼ N(0,Q1),w2 ∼ N(0,Q2) and Ω is a constant turn rate. The turn
mode is dealt with the first model (27) by including a relatively large process noise. The Jacobians of each model are
obtained by liniarizing the dynamics around the estimated state x̂ as A1 =

∂ f1(x)
∂x x=x̂, A2 =

∂ f2(x)
∂x x=x̂, and the discrete

state matrices are F1 = I +∆A1, F2 = I +∆A2, where ∆ is a time step.

Figure 4. The model of the target is shown in the figure. This is a differential wheeled robot, and the speed differential of the two wheels vl − vr generates a
turn rate ψ̇ . The dotted lines are paths of wheels through a turn with respect to the wheelbase b.
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Table 1. SET OF VELOCITIES GIVEN TO EACH MODE

Mode vl[m/s] vr [m/s]

Straight 0.33 0.33
Spin 0.165 −0.165
Turn 0.33± [0,0.032] 0.33± [0,0.032]

IV. Motion Planning

In this section, we provide our implementation of the differential dynamic programming (DDP) and introduce one
way to deal with a constrained optimization, an exterior quadratic penalty function (EQPF). A full description of DDP
algorithm can be found in,5 and a DDP with inequality constraints is discussed in.6

We consider the cost minimization that involves finding a control function u(t) below.

min
u
[φ(x(t f ), t f )+

∫ t f

t0
L(x,u, t)dt] (29)

subject to the dynamics

dx
dt

= f (x,u, t),x0 = x(t0). (30)

Our DDP takes the state vector of

x =
[

bXi
bYi

bZi
bẊi

bẎi
bŻi

]T
, (31)

and the control vector is

u =
[

bẌi
bŸi

bZ̈i

]T
. (32)

We utilize the standard ”Q function” notation from reinforcement learning, which is expressed as below:

Q(x(tk),u(tk), tk) = L(x(tk),u(tk), tk)+V (x(tk+1), tk+1)). (33)

where L(x(tk),u(tk), tk) is the running cost, and V (x(tk+1), tk+1) is the cost-to-go. Here, the running cost is expressed
as:

L(x(tk),u(tk), tk) =
1
2
(x(tk)−x∗)T Qw(x(tk)−x∗) (34)

+
1
2

u(tk)Rwu(tk),

where Qw is positive semidefinite, and Rw is positive definite, both of which are diagonal matrices and decide the
weight of states and control, respectively. The target vector x∗ is computed by using the output of the target tracker
described in the prevous section and known target information: target height and velocity.

x∗ =
[

t X̂i +
t V cos(tψ̂)t f

tŶi +
t V sin(tψ̂)t f

tZi

]T
, (35)

where t X̂i,
t Ŷi, and tψ̂ are the output of the target tracker. According to Bellman’s principle of optimality, any sub-

trajectory of an entire optimal trajectory is also optimal. This provides us with one of the essential qualities of the
DDP: backward integration. By using a quadratic expansion of the cost-to-go at each stage which is achieved by a
second-order Taylor series, we can express the backward path as follows. For conventional notations, (tk) signifies
that the function is evaluated at (x(tk),u(tk), tk).

Qx(tk) = ∇xL(tk)+∇xV (tk)∇x f (tk), (36)

Qu(tk) = ∇uL(tk)+∇xV (tk)∇u f (tk), (37)
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Qxx(tk) = ∇xxL(tk)+∇xV (tk)∇xx f (tk)+∇x f (tk)
T

∇xxV (tk)∇x f (tk), (38)

Qux(tk) = ∇uxL(tk)+∇xV (tk)∇ux f (tk)+∇u f (tk)
T

∇xxV (tk)∇x f (tk), (39)

Quu(tk) = ∇uuL(tk)+∇xV (tk)∇uu f (tk)+∇u f (tk)
T

∇xxV (tk)∇u f (tk), (40)

Vx(tk−1) = Qx(tk)−Qx(tk)Q
−1
uu (tk)Qux(tk), (41)

Vxx(tk−1) = Qxx(tk)−Qxu(tk)Q
−1
uu (tk)Qux(tk). (42)

Plus, we obtain our feedback and feedforward policies (l f b and l f f ) as follows:

l f b = Q−1
uu (tk)Qux(tk), (43)

l f f = Q−1
uu (tk)Qu(tk). (44)

These two policies makes the update for control (δu),

δu = l f f + l f bδx(tk), (45)

and the forward path is generated by a new control sequence

unew = u+ γδu, (46)

where γ is a learning rate. We set the learning rate to 0.8, and the trajectories are evaluated N = 40 times at each update.
Among the N trajectories, the trajectory which has the minimum cost is used for position control, and cascaded to the
attitude controller.

V. Simulation Results

We developed a six-degree-of-freedom quadcopter flight simulation to test the suggested vision system. This
simulator can render a texture, and the vision system processes a rendered image. We estimate the vehicle states with
the EKF, which is separated from the other filter used for target tracking. The vehicle is equipped with a monocular
camera, an inertial measurement unit (IMU), and a magnetometer. We can choose how to update the position and
the velocity: GPS, VICON cameras, and vision-aided inertial navigation. Here, we calculate the vehicle position
error bewidth and beheight as a deviation of the center of the camera from the target in the pixel. The optical axis lies
on the positive x-axis, and we use a right-handed coordinate frame for [y,z]c to define the width and height of the
image. Since our camera resolution is 320 by 240, the line of sight in the camera frame is [y,z]c = [±160,±120] in
the pixel. We show in Fig. 5 the results of the image-in-the-loop simulation. The target vehicle turns from 15 to
18 seconds, and 45 to 49 seconds. The results show that the estimator was able to track the target with the f1 mode
estimation. The heading estimation also immediately follows the truth in real time. At 30 seconds, the target enters
the spin mode, remains in the mode for 2.456 seconds, and makes a 180-degree turn. Soon after the initiation of the
turn, the probability that estimator 1 drops and switches to the mode 2 control. The controller uses mode 2 controller
temporarily even after the end of the spin mode. This is because the mode 1 estimator still has a huge residual in the
heading estimation, and increases the uncertainty of the mode 1 estimator. This prevents the vehicle from aligning
the velocity vector in a misguided direction. While the target is in the straight mode, we can successfully capture the
target at the center of the image by using the mode 1 estimator. While the target reverses its heading, the uncertainty of
mode 1 increases and switches to mode 2 before the target moves in the opposite direction. Since the mode 2 control
law does not have heading information, the controller only reacts to the position signals; therefore, it is challenging
to place the target at the center of the image. However, the mode 1 estimator catches up with the heading signal, and
finds a correct heading. The controller swaps back to the mode 1, and relocates the target at the center.

We have developed a simulation that allows us to analyze the strategy for the IARC, and Figure 6 shows the
simulation displays. We first herd a target that is close to the goal line and not heading toward it. When all the robots
close to the goal are oriented to the goal line, we fly toward other targets. In other words, the herding is prioritized
than ’rescuing’ the target. This way, we can minimize the number of the target in the field as the time elapses. We
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Figure 5. The figure shows the results of the image-in-the-loop simulation. The target tracker found the target at 5 seconds. The error of the target position
estimation (t ex,

t ey) was initially large, and the probability estimation was noisy; however, the probability soon converged to the correct model. The target
tracker was able to estimate the heading with mode 1 while the target turned from 15 to 18 seconds, and 45 to 49 seconds. When the target entered the spin
mode at 30 seconds, the probability that mode 1 is true quickly dropped and switched to mode 2. When the target reconfigured the constant speed, mode 1
started estimating the heading and re-established the mode 1 control. The bewidth,

b eheight stayed within the ±120 pixels. Therefore, the target was in the line of
sight throughout the process.

(a) (b)

Figure 6. Simulation displays

share in Fig. 7 the results of the simulation with the 1000 runs. The results display the probability density functions of
the number of robots that goaled, removed from the field, and remained in the field after 10 minutes. The maximum
velocity and acceleration of an aerial vehicle are restricted to 2.13 m/s and 3.05 m/s2 in any direction. The position
control of the aerial vehicle is achieved with a PID controller. We assume that the vehicle only has a capability to land
in front of the target; therefore, the hall effect sensor is not activated. The results show that 24.5% of the simulation
runs accomplished the mission, which is the summation of the probability that had more than or equal to the 7 goaled
robots.
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Figure 7. The figure shows the results of the IARC simulation. The top figure shows the probability density function of the number of the robots that reached
the goal line. The ’removed’ and ’remained’ represent the probabilities of the number of the robot that removed from the field and remained in the field when
the simulation was over in 10 minutes.

VI. Conclusion

This paper presents a new target-tracking system that utilizes MMAE from airborne images. Also, this paper
introduce a receding horizon DDP that enables 3D trajectory generation for autonomous landing. We introduce our
method to separate the target dynamics into mutually exclusive models and propose a method to use the statistics of
the EKFs to give a capability to an aerial vehicle that switches the control laws for another mode of the target. By
quickly judging the current mode of the target, the vehicle can capture the target in the line of sight. Simulation results
presented in this paper illustrate the effectiveness of the algorithm for tracking mobile targets that replicate the motion
specified in the IARC and show the benefit of using MMAE over a monotonic position estimator. We also propose our
vision-based solution for Mission 7 of the IARC and share a strategy that achieves 24.5% success of the mission.
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