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ABSTRACT
This paper reports the current preparation strategy of Aerial Robotics
Kharagpur, participating in IARC Mission 7 2017. Our main goal includes
robust, indoor localization in GPS denied environments supported by opti-
cal flow sensors. Other features like ground i-robots detection and differen-
tiation between the target bots and patrol bots is also discussed, followed
by a brief description of the herding algorithm AI algorithm to be used.

1. INTRODUCTION

Our research group, Aerial Robotics Kharagpur, started in January 2015 with IARC
being the prime target. Hence we started on with the problem statement of IARC
mission 7. Our team was organized into two major domains, which are "controls"
and "software". Keeping Robot Operating System (ROS) as the base we developed
our simulation environment in ROS and Gazebo in order to speed up the software
development and testing while the hardware gets ready. As mission 7 is based indoor,
hence we made April Tags based indoor true value setup. We have a website[18]
and a GitHub Organization[19].

2. SIMULATION

Gazebo, an open source robotics simulator is used to simulate the robot along with
the mathematical, physical and visualization model.It also emulates the environment
with the physics and other interactive robots.We have made ROS plugin for the be-
haviour of i-robots, whereas the quadcopter model, is made on top of hector_gazebo,
supported by JSBSim, ArduCopter, RotorS,MAVROS,ardupilot_sitl_gazebo plu-
gin. For simulations on Pixhawk, we used PX4 SITL after interfacing it with ROS.

Figure 1. Gazebo Simulator.
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3. OVERALL SYSTEM DESIGN

Figure 2. System design

4. LOCALIZATION

We propose a monocular visual localization over grid-lines algorithm for indoor
localization of Micro Aerial Vehicles (MAVs) that is accurate and computationally
fast for real-time on-board processing. Algorithm explicitly models the grid-lines
and uses probabilistic clustering and labeling method to fit observed grid-lines to
the model. A Random sample consensus (RANSAC) method is used to detect
outliers and reject the false positive lines before fitting the model.It performs a
five degree of freedom (5DoF) localization (position along X, Y, Z axis, roll and
pitch) relative to the grid-based floor in a two-step sequential process. The first
step involves localizing the MAV within a unit grid cell. Since a grid is a 2D plane
of repeating unit cells (rectangles),the unit cells cannot be differentiated from each
other when only a partial grid is visible. Hence, the relative positions are integrated
using a winner take all (WTA) method in the second stage to determine the position
estimate over the grid-based floor.

4.1. Grid Localization

In our implementation, we use Hough Transform. Since we can filter out the false
positives (outliers), we use Hough Transform with threshold parameters that allow
for more false positives than false negatives. Each line is represented by a two-
element ordered set(ρ; θ). ρ is the perpendicular distance between the line and the
coordinate origin (0;0) (top-left corner of the image) in pixels. While θ is the angle
in radians, the normal to the line makes with the X axis of image. Let Lraw= { (ρ;
θ) ∈ R2 | ρ ≥ 0; −π ≤ θ < π } be the set of all the detected lines.
Lraw = Linliers

⋃
Loutliers , where Linlieris a set of lines that belong to grid-lines,

and Loutlier is the set of lines which are not a part of the grid-lines, as detected
from the image. Hence a line is represented by a point in (ρ; θ) space.
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4.1.1. Detecting the Grid

We use the linear relationship between ρ and θ for a set of parallel lines, and
perform a Random Sampling Consensus (RANSAC) with a 2D linear model on the
set of detected lines Lraw . RANSAC is performed twice without replacement to
get two best fit inliers to the linear model , hence two best sets of parallel lines from
Lraw . Further, the set of parallel lines (ordered set of (ρ ; θ )), with arithmetic
mean of θ closer to 0 is denoted as Llong and that closer to π/2 is denoted as Llat .
Hence, the filtered set of lines Lf il , that contains only those detected lines which
belong to the grid-lines (two sets of parallel lines with separation of around π/2 in
mean θ ) is generated as Lf il = Llong

⋃
Llat

We use univariate kernel density estimation (KDE)to estimate the probability
density of ρ in Llat and Llong individually, as given by

fb(ρ) = 1
nb

n∑
i=1

K
(
ρ−ρi
b

)

Grid Line Detection

4.1.2. Orientation and Cell Localisation

• In the ρ ; θ space, the slopes of the linear curves mlat and mlong , joining
the ordered sets of parallel lines in Llat and Llong are related to roll ( α ) and
pitch ( β ) respectively as
α = tan−1(mlat) × εα + εcα
β = tan−1(mlong) × εβ + εcβ
where εα, εcα, εβ and εcβ are constants obtained from camera calibration.
• We consider the distance (sY ) between each longitudinal line of the grid-

based floor and the camera position along YW axis. The line to the immediate
positive YW direction, with respect to the camera position is indexed as i =
0.
• The projection of any line of magnitude c in YW axis with camera position

as the origin is given by g(c)

g(c) =
(
c×cos(φY )×f
cos(δ)×h

)
• Squared L2 error cost function is used to estimate sub cell position and height based

on observed ρ.
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Localization and True Value

4.1.3. Grids Localization

Let σYk be the position within uk unit cell and pkY be the position of the MAV with
respect to an initial position over the grid-based floor at kth frame. Hence we have
uk =

(
pkY
mY

)
At (k+1)th frame, the new sub-cell position σk+1

Y , might be from uk−1 ,uk or uk+1

unit cell, considering the maximum MAV speed is limited. Hence three possible
position of the MAV at (k + 1)th frame are PY = {(pY −1); (pY ); (pY + 1)
where pY = pkY + σk+1

Y - σkY . The MAV’s new position (pk+1
Y ) is given by a winner

take all (WTA) scheme, decided by pk+1
Y = argmin(pkY − p

′
Y )

2

5. GROUND ROBOT DETECTION AND TRACKING

5.1. Detection

5.1.1. Ellipse Detection

• The detection of each Ground bot will be done with a modified form of
Randomized Hough Transform(RHT), fully described in reference, to detect
ellipses that correspond to the edges of the bots.
• Two points are selected as the ends of a major axis, and a third point on the

assumed ellipse is selected randomly and the vote of the accumulator is done
on the length of the minor axis.

Bot Detection using Ellipse Detection for downward facing camera

5.1.2. YOLO Based Object Detection

• Modified R-CNN as described in YOLO is trained on 40,000 images of the
iRobot taken from different angles and height to detect the ground bot at
steep angles where the ellipse method fails to detect the ground bots because
of very high eccentricity of the viewed bots.
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Trignometric pose estimation from front camera

5.2. Position Estimation

Once the bots are detected, the noise associated with the dynamic observables of
the moving bot will be filtered out using a Kalman filter to enable tracking of the
bot. This is achieved by the following steps:

• The Kalman Filter takes in the measured position of the bot(which in this
case is the centre of the ellipse detected by the RHT) as well as its velocity
from the video feed.
• The position can also be estimated by mapping the image to real frame using

simple pin hole camera model and trigonometry. Position of the ground bots
are measured with respect to the current position of the quad for known
camera configurations.
• Downward facing camera runs the ellipse detection code only as it will remain

perpendicular to the ground thus the pitch will be negligible.
• Front facing camera runs YOLO object detection to detect ground bots for

steeper angles.
• The error associated with each of these quantities is also found by calculating

the expected noise in the readings. The error is estimated as a Gaussian
function.
• These two quantities (measured and predicted positions) are compared and

the best guess of the bot’s position is made by considering it to be the con-
figuration for which both estimates are most likely after incorporating the
associated errors.

5.3. Tracking of Multiple Robots

• Having found the most probable position of each bot using the Kalman filter,
the next step is to track multiple bots.
• A cost matrix is created which incorporates the direction in which the bots

had been moving, the distance of the updated estimates of positions from
the previous estimates, the expected collisions as well as the expected turns.
• The cost matrix is run through the Hungarian algorithm to associate the

updated positions with the previous positions, thus giving an identity to
each bot, and enabling multiple bot tracking.

6. OBSTACLE AVOIDANCE

IARC consists of moving obstacle robots which need to be avoided when they are
on the way of the desired trajectory and path.
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Obstacles Description: 4 Ground Robots with cylinders attached on top of
them to form vertical moving obstacles.

Avoidance Algorithm Overview:
The Obstacle Avoidance in IARC does not need to be global as the number of
obstacles are less in number. So, we use 1-dimensional Lidar attached to a stepper
motor to cover 360 degree obstacle detection. If the obstacle is closer than a
threshold then multiple kinds of action can be taken:

• Wait for Obstacle to Move out of Path
• Avoid Obstacle by Creating a New Trajectory around the obstacle and come

back to desired trajectory.

Procedure I:

• Interrupt Control is triggered as soon as an obstacle comes closer than 40cm
from the Lidar.
• Depending on orientation of the obstacle with respect to Lidar and comparing

with velocity direction of robot, the robot is halted at the same position or
commanded to follow line in reverse till last node is found.

Procedure II:

• Trajectory Generation Module is used to generate trajectories from node to
node via the lines or directly.
• This trajectory generation is recalculated on obstacle trigger and a visible

graph is created around the obstacle and followed till next grid node.

7. SYSTEM CONTROL

7.1. Pixhawk

We have used Pixhawk 2.0 which runs the PX4 v1.6.0 firmware. PX4 is a nearly
feature-complete open source UAV firmware. Thus our high level control is utilizes
the features of PX4 to its fullest. Since, most of PX4’s autonomous features uses
GPS, we used motion capture system to get position data from other sources like
vision. Position estimates were sent from an onboard computer. This data was used
to update its local position estimate relative to the local origin.

7.2. MAVROS

Since Pixhwak communicates in Micro Air Vehicle Link(MAVLink) protocol and
both our ground station and onboard computer uses Robot Operating System(ROS),
we used MAVROS for communication between onboard computer and Pixhawk.
MAVROS is a MAVLink extendable communication node for ROS.
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7.3. Ground Robot Tapping

We use a vertical descent strategy, making our MAV go to a desired location ahead
of the ground bot ,at a certain default height and then make it descend such that
the descent takes the same amount of time as the ground bot to reach these desired
coordinates on the ground.

Assuming a right handed Cartesian coordinate system

Tapping Mechanism

Let,

u = velocity of the ground bot in the direction of its motion

θ = orientation of the ground bot with respect to x axis

(Xg, Yg, 0) = coordinates of the ground bot

(Xq, Yq, Zq) = Coordinates of the MAV

(X ′
q, Y

′
q , Zq) = Desired Coordinates of the MAV before it starts to descend

Where Zq = h = Default height we want for the MAV in order to avoid
obstacles

t0 = time required by MAV to descend from the default height

Calculating the desired coordinates for the MAV,

X
′
q = Xg + ut0cos(θ)

Y
′
q = Yg + ut0sin(θ)

As soon as the MAV reaches these desired coordinates, it starts descending, verti-
cally. In the same time the ground bot reaches these desired coordinates, making
the tap successful. Our only assumption in the method is that the velocity of MAV
is greater than the velocity of ground bot. It is ensured by the low level controller
that this condition is always satisfied.
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8. IARC ROBOT DESCRIPTION

Figure 8. Hexcopter

8.1. Configuration

• Odroid XU4 : High Level Controller
• Pixhawk 2.0 : Low Level Controller
• ESC : Electronic Speed Controller, 45A OPTO
• LiPo : 11.1V, 3s, 6000mAh, 35C
• Motors: 850kv BLDC
• Propellers : 11” x 4.7”
• Camera Front: 30fps, Field of View - 78 degrees, Aspect Ratio - 16:9
• Camera Downward: 30 fps, Field of View - 170 degrees, Aspect Ratio - 16:9
• Receiver : 6 channel PPM, PPM Encoder
• Frame : HMF S680 Hexacopter

9. HERDING ALGORITHM AI

9.1. Greedy Method

• The motif of this algorithm is to make as many bots cross the green line as
possible with a fixed radius around the ground bot in which all the other
bots will be herd with the centre bot towards the green line.
• Before takeoff, the hexacopter will be fed with the direction information

about the green and red lines. The direction information will tell where is
the red line (east/west/north/south).
• Once the hexacopter takes off, it will hold altitude at 1.5m (from ground)

and hold position on the nearest node while holding its yaw.
• It then follows the grid to:

– Detect the position of lines.
– Follows the grids to scan for the ground bots.
– Scan for the bots such that to reduce their variance below certain

limit.
• The hexacopter will now start to locate the closest bot to the green line.

– If ground bots are found in the herding radius of the centre bot, then
it will herded with the centre bot towards the green line keeping them
inside the circle of specified size.
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– Once the centre bot crosses the green line, new centre bot among the
herd is chosen and the loop is repeated.

10. EMERGENCY KILL SWITCH

• One Dual-D flip flop CD4013B, 5 IRF540N MOSFETs, capacitors and resis-
tors are used. We used the receiver’s signal as source to the circuit which
is equivalent to the Pulse generator with variable duty cycle shown in the
circuit. The leftmost MOSFET is a controller and the rest 4 mosfets are
connected in series with the negative terminal of LIPO(power source). 4
MOSFET in parallel to each other are used keeping in mind that each can
take a max of around 33 Amps and combined will allow max of around 132
Amps for a quadrotor. For Hexacopter 7 MOSFETs should be used, one as
a controller MOSFET and the rest 6(parallel to each other) in series with
negative terminal of the power source/LIPO. 6 MOSFETs ensure that max
current allowed for the bot is raised to around 190 Amps.

• Below a particular duty cycle(T) the controller MOSFET has Vgs<Vth and
will go in cutoff region as shown below leading zero drain current in it and
potential drop across its drain resistor as a result rest MOSFETs will have
Vgs=5V due to which they go in saturation region and with very low Vds
and in this mode the bot is supplied with power source.

Kill Switch Circuit

• Above a particular duty cycle(T) the controller MOSFET has Vgs>Vth and
will go in saturation region and as a result rest MOSFETs will have Vgs = 0V
due to potential drop across drain resistor of controller MOSFET and this
will make the rest MOSFETs go in cutoff region as a result cutting of the
negative terminal from battery and hence no power supply to the bot. The
whole system shuts down instantly.

• Duty cycle(T) or as in our case PWM of signal sent through the transmitter
at which the bot is killed can be varied by varying the capacitor’s value.The
bot is represented here as the 300 milliohms resistor as there was no way to
symbolize the actual bot.
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11. TESTING

Figure 11. Sample testing arena

We have an indoor testing arena with sample grid floor as in IARC arena and two
iRobots. We have safety harness to tie up the quadcopter while testing various
controls and PID tuning.
We tested the AI (Herding) algorithms on the simulator. We tied the quadcopter
with various allowed degree of freedom to test altitude hold, yaw hold, node hold
and grid following algorithms on the real quadcopter and hexacopter in our arena.

12. State Machine

12.1. States

• Find/ Scan : Quad roams in the arena searching for bots and saving their
location.
• Bot Prediction : Predicts the best bot to attack and return its position
• Obstacle Avoidance : Avoids the obstacle
• Strategy : Plans the path and way the bot must be attacked.

12.2. Working

• Once the take off is successful the control is passed to the FSM. Entry point
in the FSM is the Find / Scan state. In find state quad tries to localize
itself as well as search for the bot. Detection and localisation is based on
probabilistic models including gaussian errors.
• Quad stays in find state until the probability of bot(s) doesn’t increase a

certain threshold , let’s say K
• Once quad is certain about the position of bot(s) with probability greater

than K , control is passed to Bot Prediction state which predicts the bot
which should be attacked among the bots with certainty higher than K
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State Machine Diagram
• Strategy state tries to analyze the different states of the bot like position,

velocity and direction and accordingly decides how the particular bot should
be attacked.
If any of the two method fails to execute properly and the probability of
the current bot is still high and feasible to attack the state is looped to
re-determine the best way among two to again attack the bot, else control
simply shifts to bot prediction mode to identify the next best bot to attack.

12.3. Rules

• State interrupted is re-run after obstacle is avoided excluding the Strategy
state where a check redirects it to Strategy or Bot detection state according
to the feasibility of attacking the same bot again.
• Anytime the probability of bot(s) go below the K, state will shift to Find /

Scan to increase the certainty of the bot(s). Exceptions :
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– Quad is attacking one bot with high certainty : A threshold delta
must be considered in such conditions when the probability of other
bots is allowed to fall as low as K-delta

• Battery is given the highest priority of all. If the battery is low , state
machine will be terminated and the quad will land.
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