
Intelligent Quadcopter for IARC 2018

Noel Brownback
Anthony Carreon

Shayer Hassan
Eric Johnson
Colin Lewis

Mark Loveland
Umer Salman
Ethan Starr

The University of Texas at Austin

ABSTRACT

Texas Aerial Robotics has constructed a custom quadrotor aircraft for the fulfill-
ment of the International Aerial Robotics Competition Mission 7. A combination of
lightweight materials and powerful propulsion enables optimizes flight time, while
standardized flight control systems supported by a massive community enabled cus-
tomization and adaptation to the mission at hand. This includes the integration of a
multitude of sensors that enhance environmental awareness and allow for the track-
ing of dynamic entities inherent to the operation using homebrewed algorithms and
the significant computing power onboard the aircraft. Safe development has been as-
sured by strategic selection of components, thorough vetting of software in Software
in the Loop simulation, and robust testing procedures in secure areas.

Introduction

Previous aerial robotics missions have always allowed for GPS or set navigation points that
allowed for constant locational awareness for the drone. Location data is important to any
mission, as telemetry prevents various failures, including complete loss of control for the
drone. Thus, Mission 7 requires novel solution to deriving this critical telemetry, as GPS
is forbidden. Additionally, the aircraft must be capable of interacting with ground vehicles
without being directly informed of their locations, requiring advanced detection and robust
hardware designed for repeated contact.

Texas Aerial Robotics addresses these challenges by utilizing computer vision. Through
computer vision the drone has the ability to both understand its location, and also track
targets in real time. The drone records the data and position of the objects, simulating those
which lie beyond the field of view, which allows for strategic analysis and definition based on
estimates of unseen/out of sight targets. Interaction with these objectives is achieved using
the carbon fiber bottom plate of the aircraft and perimeter prop guards, a material choice
that lends itself to lightweight resiliency.

Yearly Milestones

2017 - Have a working bot, with computer vision software in working or nearly working

Page 1 of 11

Electonics Battery Motor Battery

Power siphon

Pixhawk

Power Distribution
BoardNvidia Jetson TX2s

ESCs

Motors

Cameras2D LiDAR

PX4FLOW Spektrum controllerLiDARGround Telemetry

Flowchart of quadcopter electronics
*Solid arrows indicate power while dashed lines indicate power+data

2018 - Continue development of computer vision, develop a computational game strategy
through creation of simulations of the motion of Roombas, tweak the physique of the drone
for better flight control and stability

Air Vehicle

Propulsion and Lift System

The vehicle utilizes a x-y axis symmetrical quad-rotor system. This provides a balanced
airframe optimized for omni-directional maneuvering. The frame is lifted by four T-Motor
U3 KV700 motors. These motors provide 1.8 [kg] of thrust per motor at 100% throttle
when paired with a 4-cell battery and 13 [in] propellers for total 7.2 [kg] of thrust. This is
necessary for our 3.15 kg weight to maintain a 2.2 thrust-to-weight ratio ideal for battery
life and flight time.

The propellers used with the motors are 13 [in] long and made of carbon fiber. These T-
Motor propellers provide excellent precision, durability, and efficiency. The rotors are placed
to counter-rotate for flight stability and to retain a one-to-one ratio of propellers to motors.

Guidance, Navigation, and Control

Stability Augmentation System

Our system builds off of the robust open source project Arducopter. Arducopter, runs on the
Pixhawk, and controls the stability of the drone by taking in data from the IMU, compass,
altitude LiDAR and the optical flow sensor. The Arducopter flight stack is maintained by
hundreds of developers from around the world and the software is deployed on thousands of
commercial and recreational drones. The vast community of developers and users ensures
refined controls code with lots of features.

Page 2 of 11

Navigation

We have made slight modifications to the Arducopter firmware, which allow us to set the
EKF origin. This has been done to allow our drone to navigate in GPS denied environments.
For general waypoint navigation, the drone utilizes the Arducopter EKF that takes in data
from the IMU, compass, altitude LiDAR and the optical flow sensor. The EKF position is
then queried via mavros, so that our strategy code can use our position to make intelligent
decisions. In addition, the strategy node takes in data from computer vision and 2D LiDAR.
The strategy will determine a waypoint and mode, and the ros controls node will do a sanity
check on the waypoint, then publish the waypoint until the drone has reached its destination.
Over time, the EKF will have error in comparison to reality. To combat this, the control
node will input a correction vector. This correction vector is formed from our computer
vision algorithm that recognizes the absolute corners of the grid. This algorithm goes as
follows. Gaussian blur, color threshold, erosion, dilation, Canny, Hough, line intersection,
and non maximum suppression.

Overview of control system

Flight Termination System

Our drone houses a 40 [A] brushless ESC connected to a RC receiver, which acts as our kill
switch. In the event of catastrophic failure the safety operator can send the kill signal, and
all power will be cut to the drone’s systems.

Payload

The drone has been designed to carry all the necessary GNC sensors, 2D LiDAR, and an
array of cameras and 3 Nvidia Jetson TX2s. In addition the drone carries a telemetry radio,
kill switch, and RC receiver in order to carry out safe flight.

Sensor Suite

GNC Sensors

The quadcopter uses eight sensors for flight control. The main sensors used for the navigation
of the quadcopter are: a downwards-facing 1D LiDAR module, a PX4FLOW optical sensor,
and the built-in sensors of our Pixhawk 2 flight control board.

The 1D LiDAR module used is the LiDAR-lite v3 from Garmin. This one dimensional
sensor is directed downwards and provides data that is used to determine altitude. The
PX4FLOW sensor measures velocity by comparing frame by frame images and measuring
distance travelled and direction. The Pixhawk 2 contains three 3-axis accelerometers, three

Page 3 of 11

3-axis gyroscopes, and two 3-axis compasses. The data from these sensors is used by the
Pixhawk onboard system for flight control and the maneuvering of the quadcopter.

Mission Sensors

For the goal of completing Mission 7 the drone must be able to detect Roombas and obstacles.
The quadcopter is equipped with a single downward facing camera and four outward facing
cameras for image recognition, as well as a two-dimensional plane LiDAR sensor for obstacle
avoidance.

The singular bottom camera is a Logitech C210 webcam. This webcam is used for Roomba
detection and tracking the targeted Roomba for autonomous interaction.For the four periph-
eral cameras are Logitech 960 C270. These are used to recognize and track the Roombas
around the playing field. These five webcams provides enough information allowing the
drone to incorporate the recognized Roombas into the strategy of the autonomous system.
The 2D LiDAR sensor is the SWEEP sensor by Scanse. This is a single LiDAR that rotates
to provide a full x-y plane view inline with the z position of the drone for obstacle detection.
We chose to use this for obstacle detection rather than four separate LiDARs or webcams
to save on computing power.

Target Identification

For target identification, the drone carries four Logitech C270 USB webcams and one Log-
itech C210 USB webcam. One of the cameras is located at the bottom of the drone and
faces straight downward. The other four cameras are mounted on the bottom side of each
arm facing outward. All five cameras are mounted for identifying as many target Roombas
surrounding the drone as possible in order to send their coordinates to the strategy node.

There are two main objectives that need to be completed to successfully relay target infor-
mation to the strategy node. The first objective is to take in the raw video data and detect
the target Roombas so that pixel numbers of the centroids of the Roombas in the frame can
be sent as output. The second objective is to take the pixel numbers of the centroids of
the detected Roombas as input, and then output x and y coordinates relative to the drone
using a coordinate transformation and the known height and orientation of the camera with
respect to the floor.

In order to accomplish the first objective, an open source software package developed by
Joseph Redmon called YOLO (You Only Look Once) is used. More specifically, the TinyYolo
version of YOLO was elected to be used since it is lighter and can obtain higher frame
rates. YOLO is a neural network that can identify user-defined objects once it has been
trained. After training the neural network by feeding in approximate 2000 photos of the
target Roombas (with the Roombas identified manually), YOLO can reliably identify target
Roombas in real time. An example is displayed below:

After YOLO outputs the pixel locations of each identified target Roomba, the final objective
is to transform these pixel coordinates into x-y coordinates relative to the drone. In addition

Page 4 of 11

to the pixel coordinate (PIX #), the other knowns are height (z), camera rotation angle
relative to downward facing (θ), and field of view (φ), as well as total pixels in x and y
(PIX MAX). Here is a diagram to illustrate these knowns below:

X Y

Z

φ

θ

In order to transform this pixel coordinate into x-y coordinates relative to the drone, a few
key assumptions made are that:

• The camera behaves as a pinhole model

• Each pixel in the frame takes up an approximately equal fraction of the field of view

A big pitfall in this model is that no distortion from the camera lens is accounted for; these
effects are still being investigated.

Page 5 of 11

Transformation:

Pixel given from YOLO: PIX

Pixel number of the center: PIX CTR = PIX MAX
2

Define ψ as portion of angle from center image to pixel detected:

ψ = z ∗ abs(PIX
PIX MAX

∗ φ− φ
2
)

To find the real coordinate (REAL) relative to the drone in the X direction, There are two
cases:

If PIX lies above the center pixel, that is PIX > PIX CTR, Then:

REAL = z ∗ tan(θ + ψ
2
)

If PIX lies below the center pixel, that is PIX < PIX CTR, Then:

REAL = z ∗ tan(θ − ψ
2
)

There are two cases to finding the real coordinate (REAL) relative to the drone in the Y
direction:

If PIX lies above the center pixel, that is PIX > PIX CTR

REAL = z ∗ tan(θ − ψ
2
)

If PIX lies below the center pixel, that is PIX < PIX CTR

REAL = z ∗ tan(θ + ψ
2
)

This is different from the x only because top of frame is 1 and bottom is PIX MAX, while
in X ’top’ of frame is PIX MAX and bottom is 1.
Once the coordinate X,Y in meters is found relative to the drone, it must be transformed
into a coordinate that is in the ’gym reference frame’. The gym reference frame is defined as
a right handed coordinate system starting in the bottom left hand corner of the field where
the green line meets the outer white line. This transformation is defined as followed.

yawAngle = currentHeading −GymOffset

roombaPosGym = CR + EKFdronePose+R(3)(Y awAngle) ∗ roombaPosDrone

Page 6 of 11

R(3) =

cos(yawAngle) −sin(yawAngle) 0
sin(yawAngle) cos(yawAngle) 0

0 0 1

CR is the correction vector formulated from the corner detection vision algorithm. EKF-
dronePose is the position of the drone queried from the Pixhawk. R(3) is the rotation matrix
about the third axis. GymOffset is the direction of the 2 axis defined during the startup
sequence before flight. The new coordinate in the gym frame is passed off to the strategy
node as data to be acted on.

Threat Avoidance

Our avoidance system takes data from a 2D LiDAR that is used to identify the obstacle
Roombas. This data is passed and the Strategy node uses this data to weigh possible
movements negatively based on their relative position to the target Roombas. The Control
node also will use the data, and in the event an obstacle robot is within 1.5 [m] will issue a
waypoint opposite of the minimum vector.

Communications

On the Jetsons, data is passed between software nodes via ROS. Data in between our multiple
Jetsons is passed via ros messages through direct ethernet connections. Commands to the
flight computer are passed via serial connection with data encoded in MAVLINK messages.

Power Management System

The quadcopter uses a 10000mAh 4S 10C LiPo battery and a 2000mAh 3S 15C LiPo battery
for power. The 10000mAh 4S 10C LiPo is used to power our ESCs and Motors. With
4 T-Motor U3 K700 motors running at close to the ideal 50% throttle, a 4 Cell battery
was necessary to reach the 1800 grams of thrust per motor needed for hovering flight. The
2000mAh 3S 15C LiPo will power the flight control board and Jetson compute units.

Tmin = Battery power(AH)∗60
Total current drawn by motors

Assuming an average throttle of 65% for maneuvering, we see a 9 A current draw from each
motor, and with a 10 Ah battery, that provides us with 16 minutes of flight time with minimal
maneuvering and height change. This gives us plenty of headroom for more intense altitude
and positioning changes, which will allow us to move more quickly during the competition,
a valuable asset with the given time limitation.

Max continuous Amp draw (A) = Battery capacity (Ah) ∗ Discharge rate (C)

To save on weight and space, we chose a 10C discharge rate battery, as this is still more than
enough to match the maximum continuous current draw of 25 [A] and maximum practical

Page 7 of 11

current draw of 19.4 [A] required by the motors. The 10000 [mAh] battery with a 10C
discharge rate gives us a maximum continuous current draw of 100 [A], matching the limit
of the motors.

The eCalc online tool was used to validate our calculations, and as seen by the generated
graph below, there should be no issue reaching above-10 minute flight times at speeds below
15 [mph]

As for the 2000 [mAh] 3S battery, this battery powers our Pixhawk flight controller and our
three Jetson TX2 compute units. This was done partly to dedicate the entirety of the main
battery to propulsion to maximize flight time. The other reason is that the speed controllers
we chose (T-motor Air 40A) have no BEC, so a separate battery for the flight controller
(and in turn the receiver) was the simplest solution. 2000 [mAh] was chosen because of the
slim form factor we were able to find it in, and because it will provide more than adequate
power while not adding any significant amount to the quad weight.

Operations

Flight Preparations

Checklist

1. Check battery voltage (12.0-12.6v) and insert

2. Make sure LiDAR and PX4FLOW are not covered

3. Make sure that ESCs are plugged in to the right pins

4. Make sure prop guards are secure

5. Make sure that the props are on in the correct direction (leading edge in)

6. Make sure that the props are not upside down

7. Make sure props are clear of any structures

8. Make sure Kill Switch is in off position

9. Power on controllers

10. Make sure TELEM2 is unplugged

Page 8 of 11

11. Plug in power loop

12. Turn Kill Switch to on position

13. Make sure ground station has good telemetry

14. Verify critical sensors are giving good data

15. Plug in TELEM2

16. SSH start/verify autonomous scripts are running

17. Make sure everyone is clear of drone

18. Verify mode switch in Stabilize

19. Hold safety button

20. Mode switch to Autonomous

Man/Machine Interface

The drone has a DX7 RC controller interface for system checks and emergency situations. In
addition, the flight controller can be monitored via a telemetry radio using Mission Planner.
Our autonomous scripts must be initiated by an SSH connection to our Nvidia Jetsons.

Risk Reduction

Vehicle Status

Shock/Vibration Isolation

The modern Pixhawk flight controller contains internal damping from the vibration of the
drone’s structure. The team decided there is no need for extra damping. After completion of
our first drone last year, flight logs from the Pixhawk confirmed that vibration on the built
quadcopter was well within recommended amounts. The team believes there is no need to
have landing shocks, because the sophisticated Arducopter flight stack has logic to recognize
landing. Because of this, nominal landings will not interfere with the guidance or navigation
of the drone.

EMI/RFI Solutions

The Arducopter flight stack helps keep interference risk down through the EMI calibration on
the Pixhawk. The calibration calculates the magnetic interference correction by formulating
a function of the magnetic interference based on the power setting of the motors.

Safety

We took significant steps to ensure safe operation of the quadcopter. In order to keep the
quadcopter from flying where we do not want, we have a Spektrum receiver module onboard
so our designated pilot can manually control the vehicle. Additionally, we are able to check
the status of the quadcopter through our telemetry to our ground station. The structure
of the drone is also outfitted with prop guards to mitigate damage to people or property
in the event of catastrophic failure. Our prop guards took multiple iterations. We wanted
a design that would not interfere with the prop wash, but still be able prevent damage to
the quadcopter itself in the unfortunate event of collision. The first iteration looked nice,

Page 9 of 11

but interfered with the prop wash too much and weighed too much, reducing the thrust.
However, the next iteration cut weight and did not interfere with the prop wash.

Modeling and Simulation

To safely test our software throughout the development process, the team implemented a
simulation using the Gazebo application. Using this tool, TAR was able to deploy full scale
software in the loop simulation without jeopardizing hardware with each design iteration.

To employ the Gazebo framework, the team imported a standard quadcopter model from
the arducopter standard library and roomba models from Gazebo model library, which were
then updated with the color coded plates and obstacle tubes prescribed for the competition.
Additionally, the ground plain within the reproduction was changed to match the texture
expected at the competition.

Gazebo was chosen because of its compatibility with ROS and Ardupilot, the internal com-
munication protocol employed onboard our drone. With this congruence, the exact same
software run onboard the drone could be run within the simulation, complete with sensor
feedback detected within the simulated instance. C++ scripts could then be utilized to
enforce the correct roomba behaviors, scripting the robots using the same messaging envi-
ronment as the quadcopter itself (ROS).

Overall, modeling our software behavior within a Gazebo simulation greatly expedited the
development process. By standardizing the simulation setup, tests could be conducted on
multiple computers at any time, instead of requiring sluggish process of updating, calibrating,
and flying the physical drone. Additionally, simulation protected the hardware from the
accidents and unintentional flight behavior inherent to prototype software.

Testing

Simulation, however, can only prove so much. Eventually, refined software was tested on
a model testbed or on the drone itself. Much of the computer vision and general software
integration was developed on this testbed, where performance could be verified with the
same sensors and computational hardware as the aircraft before full scale deployment. Even
strategy nodes could be tested on this platform, with waypoint predictions vetted before
being deployed to the aircraft.

Flight tests, expectedly, require a specific setting. Generally, Texas Aerial Robotics tested on
the roof of the Aerospace building on campus at the The University of Texas. This controlled
environment bore witness to hardware implementation throughout our design process, from
original flight readiness to early autonomy.

However, summer development saw additional test flights conducted in a vacant parking
garage, but both locations suffered from magnetic inconsistencies which interfered with com-
pass calibrations. Because of this, later tests, including the qualifying run submitted, were
conducted in a parking lot to the north of the university.

Page 10 of 11

Regardless of the setting, each flight test was conducted with constant apparatus. A four
meter by four meter test mat printed with the pattern expected at competition, to allow
optical flow for navigation. Across this mat drives a test roomba, which accurately recreates
both the physical appearance and behaviors of those robots that will be tracked at the venue,
complete with top plate and switch. Finally, there is the drone itself, which starts on a corner
of the mat, takes off autonomously, and then executes the maneuver to be tested.

Conclusion

Texas Aerial Robotics’ solution to the challenges provided by IARC Mission 7 are bountiful
and diverse. The physical design process, from the ground up, optimizes flight time while
enabling the physical contact required for success, Unique software utilizes input from an
expansive battery of sensors to overcome the telemetry limitations imparted by the contest
and track the dynamic objectives as they move about the area. Safe operation of these vast
networks of interlocking components has been ensured through particular hardware selection
and thorough vetting.

References

[1] Autonomous Systems for S.P.A.C.E. R.O.B.O.T.I.C.S. Lab. general info wiki, 2016.
https://github.com/AS4SR/general_info/wiki/%23%23-Home-%23%23.

[2] Joseph Redmon and Ali Farhadi. Yolo9000: Better, faster, stronger. arXiv preprint
arXiv:1612.08242, 2016.

[3] Anne Solberg. Hough transform, 2009. https://www.uio.no/studier/emner/matnat/
ifi/INF4300/h09/undervisningsmateriale/hough09.pdf.

[4] Ruye Wang. Canny edge detection, 2013. http://fourier.eng.hmc.edu/e161/

lectures/canny/node1.html.

Page 11 of 11

