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ABSTRACT 

Fully autonomous flight of drones is an emerging field in the aerospace industry             
which is becoming relevant for companies such as Amazon and important for the             
military. The issues involved in this field no longer focus on the ability of a single                
drone to operate independently, but instead, how a group of drones can operate as              
one body to complete a task in the most efficient manner. This paper details our               
attempt at producing four fully autonomous drones capable of completing tasks           
given by the voice commands of a human. We include details involving the             
physical structure of the drones and how they process a command.  

 
INTRODUCTION 
Statement of Problem 
The problem posed for this year’s competition revolves around the use of several drones to assist 
a human operator in reaching a designated area while avoiding an onslaught of enemy drones. 
The main objective is to successfully retrieve the four key components from the designated areas 
while avoiding the laser beam projectiles emitted by enemy, sentry drones. Success relies heavily 
on the ability for the human operator to interact seamlessly with her auxiliary drones to emit 
healing beams and shield the operator from enemy drones. 
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Conceptual Solution to Solve the Problem 
Our solution to the problem focuses on the five specified points of emphasis: man-machine 
interaction, the fused sensory enhancement of a human operator by a fleet of aerial robots, 
swarm interaction, aerial target designation, and head-to-head interaction with opposing aerial 
robots. We solved the problem by using a combination of autonomous flight features and user 
commands activated via voice control. In this sense, our drones are autonomous, but are still able 
to interact and assist the human operator while attempting to successfully complete the mission. 
 
Yearly Milestones 
There were a number of yearly milestones each of our subgroups made throughout the year 
including our helmet detection algorithm, the building and completion of our drone, and the 
design of our obstacle detection algorithm.  
 
AIR VEHICLE 
Description of Configuration/Type 
We have chosen to build each of our four drones using the same design so that each one is 
capable of performing all tasks if need be. This design is a generic quadcopter using the “X” 
formation for flight. The frame is an S500 which has been modified using 3D printed 
components in order to attach the necessary equipment. This frame in combination with the 
Hobbypower 2212 920 KV Brushless motors and a 2250mAh Lumenier battery is estimated to 
produce around 7 pounds of thrust at full throttle. With this amount of thrust and a small frame 
we have ensured that our drones remain highly responsive in flight. All components such as 
onboard computers and cameras have been mounted using 3D printed components in order to not 
interfere with the stability of the drones.  
 
Flight Control System 
Our drone’s flight control system consists of an open source flight stack combined with 
hardware, sensors, and custom code. We used the PX4 flight stack, an open source project apart 
of Dronecode. The PX4 flight stack has been developed by countless people and companies 
around the world and is well tailored for autonomous flight with aerial vehicles. Our drone has 
the Pixhawk 2 flight controller as the hardware that runs the PX4 software. The Pixhawk 2 is a 
flight controller module that controls our flight using internal and external sensors. These include 
an accelerometer, gyroscope, magnetometer, and external optical flow camera. We chose the 
Pixhawk 2 because of its ability to incorporate a vast amount of sensors and connection to other 
systems. The last part of our flight control system is a computer that communicates with the 
Pixhawk 2 and computes our navigation (2). We use an onboard raspberry pi 3 board, which 
communicates via the MavLink protocol to the Pixhawk 2 flight controller.  
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Navigation 
Navigation is computed by the onboard raspberry pi. All of the sensor data is first read by the 
Pixhawk 2 and then translated into useful estimates. The new mixed data is then sent to the 
raspberry pi for use in navigation. The raspberry pi also receives commands through a 
microphone of voice commands. The commands will be translated into the final movement of 
the drone. Based on the end result of the command received, the raspberry pi mixes data from the 
pixhawk 2 to calculate target velocities for the drone. These calculated velocities are then sent 
back to the pixhawk 2 to be executed. The raspberry pi also calculates the local position of the 
drone and keeps track of the changing velocities. All of the computation done on the raspberry pi 
is done within the framework of a ROS program. ROS is a set of tools developed specifically to 
help simplify the development of robots. A ROS package called MavROS combines all of our 
calculations and packages it in a MavLink message to send to the Pixhawk 2. In this way, our 
program calculates the velocity and action the drone should take, and the MavROS package 
takes care of the communication between the drone and raspberry pi. 
 
Attitude 
The Pixhawk 2 flight controller uses its accelerometer, gyroscope, and magnetometers to 
calculate the attitude of the drone automatically. The Pixhawk 2 has dual sensors for everything 
to ensure a stable flight and protect against sudden sensor failures. The pixhawk 2 receives 
messages from the raspberry pi and adjusts the attitude of the drone to reflect the desired velocity 
and movement. An optical flow sensor on the bottom of the drone is also used to adjust the 
attitude of the drone. We use the PX4Flow optical flow sensor and a lidar range sensor. The 
Pixhawk 2 mixes the optical flow data into its adjustment of the attitude in order to minimize 
drift. 
 

 
Figure 1. Control system architecture 

Page 3 of 7 



 

 
Flight Termination System 
We have equipped each of our drones with a communication line using a receiver and a 
transmitter. These transmitters have been programmed such that each drone can be shut down 
individually with a switch. The drones and transmitters have been color coordinated such that in 
the case of an emergency one drone can be shut down independent of the others. It should be 
noted however that this system does not remove power from the drone completely; instead, it 
halts the motors until given further commands. Leaving the drone in this state for more than 30 
seconds will result in the disarming of the drone, however, if desired the switch can be reset and 
the drone can take flight again before the drone disarms. In addition to having this shutdown 
feature, we must also manually arm each drone individually for flight. This is a safety 
implementation that will help prevent errors within our code during the initial start-up phase.  
 
MISSION PACKAGE 
Perception System 
Helmet Detection and Tracking 
Our drones are capable of detecting the player’s helmet and following it. A camera is mounted to 
the center of the bottom surface of the drone, facing down, which takes a video with the low fps 
of 5 - 10, as our drones will operate at a low speed. Our Helmet detection program determines if 
a helmet is present in an image by applying a procedure that uses the OpenCV library. The 
program filters the image for the color red, and then eliminates the noise consisting of small red 
pixels by erosion and dilation. Using the flood fill algorithm, the program calculates the area of 
each chunk of consecutive red pixels, and eliminates the chunks that are too oblong to be a 
helmet. Finally, the program applies a region of interest to the largest chunk, the one most likely 
to be the helmet. The program then returns the relative position of the helmet in the image to the 
helmet tracking program. The program tries to move the drone in order to center the helmet in 
the image, thus tracking the helmet. This program currently does not guarantee that the object of 
the interest is the helmet. However, voice commands allow a human to correct this situation, as 
well as reposition the drones to make them see the helmet. 
 
QR code detection 
We currently use a parallelogram based method for detecting QR codes. As the QR code can 
change, and at least one of the quadrants has none of the standard identifiers in such a code, we 
opted to detect the shape of the iPad itself using a detector based on the Hough transform. This 
detects lines in the image, which we then compare to find those that are likely parallelograms. 
From there, we verify a theoretical parallelogram against the actual pixels of the image, to check 
that it is not a false positive. Even with this, the algorithm is relatively unreliable in ideal 
circumstances and is the most significant source for improvement. Once the iPad has been 
identified, we use OpenCV’s 3D reconstruction capabilities along with the camera constants to 
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unskew the screen of the iPad, and overlay all four fragments to read the full code. Although the 
overall algorithm is currently finicky, it only needs one clear, correct detection for each 
fragment, and it processes quickly enough that this can be achieved even with a low success rate. 
 
Threat Assessment 
The drones are equipped with relatively basic threat assessment in the form of 4 ultrasonic 
sensors. These allow it to react quickly to avoid a fast moving threat, either in the form of a 
drone, or a fast approaching wall. The values from the sensors are fed into a simple algorithm to 
remove noise and then turned into simplistic flight instructions to move to avoid crashing. The 
long term threat response is to be provided via voice instructions from a human, as long term 
threats are unlikely to cause a crash. 
 
Communications System 
The four drones use onboard raspberry pi computers to handle communication amongst 
themselves. Each drone is equipped with a raspberry pi that deals with the intense vision and 
navigation computations. In addition, the drones are able to send and receive messages from a 
ground computer. This ground computer will then communicate with each drone and coordinate 
their messaging. The ground computer will have a router that connects via wifi to each drone. In 
this way, each drone can communicate with any other drone through the ground computer. We 
also have a tablet with a microphone that sends our audio commands to the ground computer. 
The ground computer will then send these audio commands to each drone. So, we will be able to 
communicate with our drones through the tablet, ground computer, and onboard raspberry pi. 
 
User Interface / Man-Machine Interface 
The user interacts with our drone through a tablet and by being in the same physical space of the 
drone. We developed an Android application that receives a video feed from a raspberry pi 
camera. A raspberry pi camera is placed on the bottom of each drone to provide a video feed to 
the user. The application then displays this video feed to the user. The application also listens for 
audio input for our voice commands. The user speaks into the tablet, and the words are 
transmitted to the ground computer by the application. The tablet with the application allows the 
user to view what the drones are seeing and be able to transmit voice commands to them. 
 
RISK REDUCTION 
Vehicle Design 
As required, we have encased the propellers of our quadcopters such that no human may be 
injured during operation. In addition, each drone requires individual activation to begin flight, 
thus there is little chance of startup error. The vehicles have been designed to be light in relation 
to their thrust output, therefore they are highly responsive in flight; this will help prevent 
accidental collisions.  
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Safety 
Obstacle detection and avoidance  
When our drones detect obstacles in a short range using the ultrasonic sensor and infrared sensor, 
they stop and wait for human commands. The drones constantly measure the distance to the 
nearest obstacle in four directions and slow down or stop depending on the distance to the 
obstacle. An ultrasonic sensor SRF05 is mounted to each side of the rectangular frame of the 
drone, thus four in total, in addition to the complimentary infrared sensor GP2Y0A710K0F 
(range 100-550cm). 
 
Modeling and Simulation 
For construction of the drones, we used Fusion360’s 3D modeling, which allowed for accurate 
attachment of necessary components to our frame. In addition, Fusion360 provides the ability to 
do structural analysis of our drone to determine if there are any major issues when encountering 
outside stresses. These simulations showed that there are no major errors with our design.  
 
We created an ubuntu desktop virtual machine using the Oracle VM VirtualBox Manager. For 
our robot software development, we installed the latest version of ROS called ROS Melodic. To 
communicate with the drone or the simulator in this case, we installed MAVROS. All the Python 
code we developed for our drone was run on MAVROS (1). 
 
In order to see the drone hovering and to get a feel of what was going on without a distraction 
from the code, we decided to use PX4 and Gazebo. PX4 is an open source flight control software 
for drones and other unmanned vehicles. PX4 was chosen because it allows us to build and 
maintain the hardware and software in a scalable way. This excellent open source autopilot stack 
offers Software-in-the-loop (SITL) and hardware-in-the-loop (HITL) simulation. We can easily 
integrate with PX4’s simulator using MAVROS. 
 
Gazebo is a powerful 3D simulation environment for autonomous robots that is particularly 
suitable for testing object-avoidance and computer vision. The Iris quadcopter simulated in 
Gazebo/SITL permits us to control our simulation with MAVROS. 
 
Physical Testing 
There is only so much testing that the simulation can show, therefore we had to put our software 
on the drone itself. Due to the limited amount of space around St. Olaf College campus, we did a 
few tests in our lab space. This space proved to be somewhat adequate while using the software 
from the simulation. Later, when we had redefined our software and developed the specific 
settings for the flight testing, we did some tests outside in the open space. 
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When testing outside, we would first fly the drone in manual flight mode with RC control. We 
would then switch to whatever mode we were testing. To test the PX4Flow sensor for optical 
flow integration, the drone was changed into a position hold mode. We also tested offboard 
mode, where the drone would receive messages from an onboard computer to control its flight. 
The RC transmitter was present at all test flights and acted as a kill switch to immediately kill the 
drone to avoid any dangerous collisions. 
 
CONCLUSION 
In conclusion, we feel that we have put together drones capable of competing with the rest of the 
pool through our utilization of a reliable flight control system, an efficient communication 
method, and complete safety features. Our combination of autonomous flight and stabilization 
elements, including the necessary sensors and code associated with the design, and verbal 
communication system allow us to operate alongside our drone without having to take full 
control. Our intelligent helmet and QR code detection algorithms will allow our drones to fly 
alongside our operator while being able to decode the information necessary for the competition. 
With the combination of modeling and simulation, the physical testing performed, and obstacle 
detection and avoidance features of the drone, we feel confident that our drone is safe and ready 
for competition. 
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